Please ensure Javascript is enabled for purposes of website accessibility
Vol. 33 Núm. 3 (2018): 99, septiembre-diciembre
Artículos

Evaluación de los costos económicos totales de los desastres naturales: inundación en la ciudad de Sheffield, 2007

David Mendoza Tinoco
Investigador de proyecto, El Colegio de México, A.C., Centro de Estudios Económicos, Programa de Análisis Económico.
Biografía
Alba Verónica Méndez Delgado
Profesora investigadora, de la Universidad Autónoma de Coahuila, Centro de Investigaciones Socioeconómicas.
Biografía

Publicado 2018-08-14

Palabras clave

  • desastres naturales,
  • inundaciones,
  • modelo insumo-producto,
  • evaluación de desastres,
  • costos directos,
  • costos indirectos
  • ...Más
    Menos

Cómo citar

Mendoza Tinoco, D., & Méndez Delgado, A. V. (2018). Evaluación de los costos económicos totales de los desastres naturales: inundación en la ciudad de Sheffield, 2007. Estudios Demográficos y Urbanos, 33(3), 699–732. https://doi.org/10.24201/edu.v33i3.1786
Metrics
Vistas/Descargas
  • Resumen
    2744
  • PDF
    798
  • En línea
    2403

Descargas

Los datos de descargas todavía no están disponibles.

Métrica

Resumen

Los desastres naturales representan altos costos que conllevan desequilibrios económicos. Las pérdidas físicas iniciales generan costos indirectos que amplifican el daño total. Este artículo presenta una metodología basada en el modelo de insumo-producto para evaluar los costos económicos totales de los desastres, y se aplica al caso de las inundaciones de 2007 en Sheffield, Reino Unido. Los resultados sugieren que cada unidad de costo por daños directos, derivados de la destrucción física por la inundación, genera un costo adicional por 0.75 unidades en costos indirectos, contabilizado como la pérdida de producción ocasionada por las perturbaciones a lo largo de las cadenas productivas. El análisis brinda información más comprehensiva sobre los efectos de los desastres naturales en la economía, así como sobre los sectores productivos más afectados. Esto podría coadyuvar en una mejor asignación de recursos para la gestión de los riesgos por desastres naturales.

Referencias

  1. Ash, J., Fenn, T., Daly, E., y Wels, N. (2008). Economic impacts of flood risk on Yorkshire and Humber: Cost of 2007 floods. Inglaterra.
  2. Bockarjova, M., Steenge, A., y van der Veen, A. (2004). On direct estimation of initial damage in the case of a major catastrophe: Derivation of the “basic equation”. Disaster Prevention and Management, 13(4), 330-336. Recuperado de http://www.emeraldinsight.com/doi/pdfplus/10.1108/09653560410556555 DOI: https://doi.org/10.1108/09653560410556555
  3. Burton, I., Challenger, B., Huq, S., Kein, R. J. T. y Yohe, G. (2001). Adaptation to climate change in the context of sustainable development and equity. En Intergovernmental Panel on Climate Change (ed.), Climate change 2001: Impacts, adaptation and vulnerability. Cambridge University Press.
  4. Chen, S. Q., Fath, B. D. y Chen, B. (2011). Information-based network environ analysis: A system perspective for ecological risk assessment. Ecological Indicators, 11, 1664-1672. Recuperado de https://doi.org/10.1016/j.rser.2014.10.017 DOI: https://doi.org/10.1016/j.ecolind.2011.04.013
  5. Chen S. Q., Chen, B. y Fath, B. D. (2015). Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renewable & Sustainable Energy Reviews, 42, 78-92. Recuperado de https://doi.org/10.1016/j.rser.2014.10.017 DOI: https://doi.org/10.1016/j.rser.2014.10.017
  6. Cochrane, H. (1997). Economic impacts of a Midwestern earthquake. NCEER Bulletin, 11(1), 1-20. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.652.169&rep=rep1&type=pdf
  7. Cochrane, H. (2004). Economic loss: Myth and measurement. Disaster Prevention and Management, 13(4), 290-296. Recuperado de http://www.emeraldinsight.com/doi/pdfplus/10.1108/09653560410556500 DOI: https://doi.org/10.1108/09653560410556500
  8. Cole, S. (2003). Protection, risk, and disaster in economic network. En A. van der Veen, A. L. V. Arellano y J. P. Nordvik (eds.), Joint NEDIES and University of Twente Workshop in search of a common methodology on damage estimation. Delft: Office for Official Publications of the European Communities.
  9. Committee on Climate Change (2016). UK Climate Change Risk Assessment 2017. Londres: UK Government. Recuperado de www.theccc.org.uk/uk-climate-change-risk-assessment-2017
  10. Dietzenbacher, E. y Lahr, M. L. (2013). Expanding extractions. Economic Systems Research, 25(3). Recuperado de http://dx.doi.org/10.1080/09535314.2013.774266 DOI: https://doi.org/10.1080/09535314.2013.774266
  11. Dietzenbacher, E. y Miller, R. E. (2015). Reflections on the inoperability input-output model. Economic Systems Research, 27(4), 478-486. https://www.tandfonline.com/doi/full/10.1080/09535314.2015.1052375 DOI: https://doi.org/10.1080/09535314.2015.1052375
  12. Flegg, A. T. y Webber, C .D. (2000). Regional size, regional specialization and the FLQ formula. Regional Studies, 34(6), 563-569. Recuperado de http://www.tandfonline.com/doi/pdf/10.1080/00343400050085675?needAccess=true DOI: https://doi.org/10.1080/00343400050085675
  13. Greenberg, M. R., Lahr, M. y Mantell, N. (2007). Understanding the economic costs and benefits of catastrophes and their aftermath: A review and suggestions for the U.S. Federal Government. Risk Analysis, 27(1). Recuperado de http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2006.00861.x/epdf DOI: https://doi.org/10.1111/j.1539-6924.2006.00861.x
  14. Haimes, Y. y Jiang, P. (2001). Leontief-based model of risk in complex interconnected infrastructures. Journal of Infrastructure Systems, 7(1), 1-12. Recuperado de https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282001%297%3A1%281%29 DOI: https://doi.org/10.1061/(ASCE)1076-0342(2001)7:1(1)
  15. Haimes, Y. Y., Asce, F., Horowitz, B. M., Lambert, J. H., Santos, J. R. y Crowther, K. G. (2005). Inoperability input-output model (IIM) for interdependent infrastructure sectors. I: Theory and methodology. Journal of Infrastructure Systems, 11(2), 67-79. Recuperado de https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282005%2911%3A2%2867%29 DOI: https://doi.org/10.1061/(ASCE)1076-0342(2005)11:2(67)
  16. Hallegatte, S. (2008). An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina. Risk Analysis, 28(3), 779-799. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/18643833 DOI: https://doi.org/10.1111/j.1539-6924.2008.01046.x
  17. Hallegatte, S., y Przyluski, V. (2010). The economics of natural disasters. Concepts and methods (Policy Research Working Paper, núm. 5507). Washington: Banco Mundial. DOI: https://doi.org/10.1596/1813-9450-5507
  18. Kajitani, Y. y Tatano, H. (2014). Estimation of production capacity loss rate after the great east Japan earthquake and tsunami in 2011. Economic System Research, 26(1). Recuperado de https://doi.org/10.1080/09535314.2013.872081 DOI: https://doi.org/10.1080/09535314.2013.872081
  19. Koks, E. E., Bockarjova, M., de Moel, H. y Aerts, J. C. J. H. (2014). Integrated direct and indirect flood risk modeling: Development and sensitivity analysis. Risk Analysis, 35(5). Recuperado de https://doi.org/10.1111/risa.12300 DOI: https://doi.org/10.1111/risa.12300
  20. Leung, M., Haimes, Y. Y. y Santos, J. R. (2007). Supply- and output-side extensions to the inoperability input-output model for interdependent infrastructures. Journal of Infrastructure Systems, 13(4), 299-310. Recuperado de https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282007%2913%3A4%28299%29 DOI: https://doi.org/10.1061/(ASCE)1076-0342(2007)13:4(299)
  21. Li, J., Crawford-Brown, D., Syddall, M. y Guan, D. (2013). Modeling imbalanced economic recovery following a natural disaster using input-output analysis. Risk Analysis, 33(10). Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/23614394 DOI: https://doi.org/10.1111/risa.12040
  22. Mendoza-Tinoco, D., Guan, D., Zeng, Z., Xia, Y. y Serrano, A. (2017). Flood footprint of the 2007 floods in the UK: The case of the Yorkshire and The Humber Region. Journal of Cleaner Production, 168, 655-667 Recuperado de https://doi.org/10.1016/j.jclepro.2017.09.016 DOI: https://doi.org/10.1016/j.jclepro.2017.09.016
  23. Messner, F., Penning-Rowsell, E., Green, C., Meyer, V., Tunstall, S. y van der Veen, A. (2007). Evaluating flood damages: guidance and recommendations on principles and methods (Reporte de investigación, núm. T09-06-01). FLOODsite Project. Recuperado de http://www.floodsite.net/html/partner_area/project_docs/T09_06_01_Flood_damage_guidelines_D9_1_v2_2_p44.pdf
  24. Miller, R. E. y Blair, P. D. (2009). Input output analysis: Foundations and extensions. Cambridge: US: Prentice-Hall. DOI: https://doi.org/10.1017/CBO9780511626982
  25. Okuyama, Y. (2004). Modeling spatial economic impacts of an earthquake: Input-output approaches. Disaster Prevention and Management, 13(4), 297-306. Recuperado de http://www.emeraldinsight.com/doi/pdfplus/10.1108/09653560410556519 DOI: https://doi.org/10.1108/09653560410556519
  26. Okuyama, Y. (2007). Economic modeling for disaster impact analysis: Past, present, and future. Economic Systems Research, 19(2), 115-124. Recuperado de http://www.tandfonline.com/doi/pdf/10.1080/09535310701328435?needAccess=true DOI: https://doi.org/10.1080/09535310701328435
  27. Okuyama, Y. (2009) Critical review of methodologies on disaster impact estimation. (Documento de trabajo). Assessment on the Economics of Disaster Risk Reduction, the Global Facility for Disaster Reduction and Recovery (GFDRR), World Bank.
  28. Okuyama, Y. (2014). Disaster impact and input-output analysis. Economic Systems Research, 26(1), 1-12. Recuperado de https://doi.org/10.1080/09535314.2013.871505 DOI: https://doi.org/10.1080/09535314.2013.871505
  29. Oosterhaven, J. (2017). On the limited usability of the inoperability IO model. Economic Systems Research, 29(3), 452-461. Recuperado de https://doi.org/10.1080/09535314.2017.1301395 DOI: https://doi.org/10.1080/09535314.2017.1301395
  30. Oosterhaven, J. y Bouwmeester, M. C. (2016). A new approach to modeling the impact of disruptive events. Journal of Regional Science, 56(4), 583-595. Recuperado de http://onlinelibrary.wiley.com/doi/10.1111/jors.12262/epdf DOI: https://doi.org/10.1111/jors.12262
  31. Pitt, M. (2008). The Pitt review. Londres. Recuperado de http://www.climatejust.org.uk/resources/pitt-review-2008
  32. Romanoff, E. y Levine, S. (1981). Anticipatory and responsive sequential interindustry models. IEEE Transactions on Systems, Man, and Cybernetics, 11(3), 181-186. Recuperado de http://ieeexplore.ieee.org/document/4308650/ DOI: https://doi.org/10.1109/TSMC.1981.4308650
  33. Romero, C. A., Mastronardi, L. J. y Faye, M. J. (2012). Location quotient analysis. The case of Cordoba state. Munich Personal RePEc Archive (36997). Recuperado de https://mpra.ub.uni-muenchen.de/36997/e
  34. Rose, A. Z. (1995). Input-output economics and computable general equilibrium models. Structural Change and Economic Dynamics, 6(3), 295-304. Recuperado de https://doi.org/10.1016/0954-349X(95)00018-I DOI: https://doi.org/10.1016/0954-349X(95)00018-I
  35. Rose, A. Z. (2004). Economic principles, issues, and research priorities in hazard loss estimation. En Y. Okuyama y S. E. Chang (eds.), Modelling spatial and economic impacts of disasters. Berlín, Heidelberg y Nueva York: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-540-24787-6_2
  36. Santos, J. R. (2006). Inoperability input-output modeling of disruptions to interdependent economic systems. Systems Engineering, 9(1), 20-34. Recuperado de http://onlinelibrary.wiley.com/doi/10.1002/sys.20040/epdf DOI: https://doi.org/10.1002/sys.20040
  37. Santos, J. R. y Haimes, Y. Y. (2004). Modeling the demand reduction input-output (i-o) inoperability due to terrorism of interconnected infrastructures. Risk Analysis, 24(6), 1437-1451. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/15660602 DOI: https://doi.org/10.1111/j.0272-4332.2004.00540.x
  38. Santos, J. R. y Rehman, A. (2012). Risk-based input-output analysis of hurricane impacts on interdependent regional workforce systems. Natural Hazards, 65(1), 391-405. Recuperado de https://link.springer.com/article/10.1007/s11069-012-0369-0 DOI: https://doi.org/10.1007/s11069-012-0369-0
  39. Santos, J. R., Yu, S., Pagsuyoin, S. y Tan R. (2014). Time-varying disaster recovery model for interdependent economic systems using hybrid input-output and event tree analysis. Economic System Research, 26(1). Recuperado de doi: https://doi.org/10.1080/09535314.2013.872602 DOI: https://doi.org/10.1080/09535314.2013.872602
  40. Steenge, A. E., y Bockarjova M. (2007). Thinking about rigidities and imbalances in post-catastrophe economies: An input-output based proposition. Economic Systems Research, 19(2), 205-223. Recuperado de https://research.vu.nl/en/publications/thinking-about-rigidities-and-imbalances-in-post-catastrophe-econ DOI: https://doi.org/10.1080/09535310701330308
  41. Triple E Consulting. (2014). Climate extremes. Defining a pilot approach on estimating the direct and indirect impacts on economic activity. European Commission.
  42. Vanneuville W., Kellens, W., Maeyer, P. D., Reniers, G. y Witlox, F. (2011). Is “flood risk management” identical to “flood disaster management”? Earthzine, 8. Recuperado de https://earthzine.org/2011/03/21/is-flood-risk-management-identical-to-flood-disaster-management/
  43. Veen, A. V. d. (2004). Disasters and economic damage: macro, meso and micro approaches. Disaster Prevention and Management, 13(4), 274-279. Recuperado de http://www.emeraldinsight.com/doi/pdfplus/10.1108/09653560410556483 DOI: https://doi.org/10.1108/09653560410556483
  44. Veen, A. V. d. y Logtmeijer, C. (2003). How vulnerable are We for flooding? A GIS approach. En A. van der Veen, A. L. V. Arellano y J. P. Nordvik (eds.), In search of a common methodology for damage estimation. Delft: Office for Official Publications of the European Communities / Joint NEDIES / University of Twente.
  45. Xu, W., Hong, L., He, L., Wang, S. y Chen, X. (2011). Supply-driven dynamic inoperability input -output price model for interdependent infrastructure systems. Journal of Infrastructure Systems, 17, 151-162. Recuperado de https://ascelibrary.org/doi/abs/10.1061/(ASCE)IS.1943-555X.0000058 DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000058