LA INTEGRIDAD DEL REGISTRO DE DEFUNCIONES ADULTAS EN MÉXICO: 1930-1980

ALEJANDRO MINA VALDÉS El Colegio de México

EN UNA SESIÓN INFORMAL sobre demografía matemática en la reunión de la Asociación Internacional para el Estudio Científico de la Población, llevada a cabo en Liège en 1973, el profesor W. Brass propuso un método para estimar la integridad con la cual las defunciones son registradas (en una encuesta o registro) en una población que es aproximadamente estable. El método está basado en la constancia de la tasa de crecimiento de diferentes segmentos de poblaciones estables. Graficando la tasa de mortalidad por encima de la edad a contra la razón N(a)/N(a+), donde N(a) es el número de personas de edad a (estimado como el promedio del número de personas alrededor de la edad a) y N(a+) es el número de personas de edad a o más. La población por encima de la edad a puede ser considerada una población estable: llegar a la edad a es equivalente a nacer dentro de la población en edad a y más. El número de defunciones arriba de la edad a[D(a+)] dividido por N(a+) es la tasa de mortalidad de la población arriba de la edad a: N(a)/N(a+) es la tasa de "natalidad" si las personas que anualmente alcanzan la edad a son consideradas nacidas dentro de la población de personas de edad a y por encima. La tasa de natalidad menos la tasa de mortalidad es la tasa de crecimiento; en una población estable la tasa de crecimiento de la población arriba de la edad 5, 10, ..., 70 es la misma. Así, D(a+)/N(a+) y N(a)/N(a+) en las distintas edades difieren por una constante [r(a+)=r]. Cuando D(a+)/N(a+), los puntos resultantes deben describir una línea recta con una pendiente de uno, donde las dos variables difieren por una constante, y son entonces equivalentes a la ecuación de una línea recta: Y = x + r. Si solamente es registrada una fracción K de defunciones en cada edad, la pendiente de la línea es K veces más grande que la unidad. De aquí que una gráfica de D(a+)/N(a+) contra N(a)/N(a+) provee una serie de puntos para los cuales una línea recta puede ser ajustada; la pendiente de la línea es la integridad del registro de defunciones relativo a la integridad del registro de la población. A pesar de que el procedimiento de Brass está basado en la constancia de la tasa de crecimiento de los diferentes segmentos de una población estable, no requiere, a priori, conocer la tasa de crecimiento; en realidad, del método mismo se deriva una estimación de la tasa de crecimiento

En 1978, Preston (Preston y Hill, 1980) proponen un segundo procedimiento para determinar la integridad con que son registradas las defunciones en poblaciones aproximadas estables. Cabe señalar que ambos procedimientos (Brass y Preston) son convencionalmente limitados por la mortalidad infantil, esto es, para la mortalidad por debajo de 5 o 10 años. La integridad del registro de defunciones (del sistema de registro o de registro de una encuesta) para infantes y niños es a menudo diferente de la integridad del registro de defunciones de edades adultas. Cualquier acontecimiento de la estimación de la mortalidad infantil y en los primeros años de vida puede ser tratado separadamente por métodos que actualmente están bien establecidos (Brass y Coale, 1968; Sullivan, 1972; Trussell, 1975; Preston y Palloni, 1977).

Uno de los últimos aportes al tema, es el efectuado por Samuel Preston, Ansley J. Coale, James Trussell, y Maxime Weinstein (1980).* En el presente trabajo se presenta el modelo planteado por ellos, así como su empleo en la estimación del grado de subregistro de la mortalidad adulta en México.

El método anteriormente considerado, está basado en características de poblaciones estables, esto es, poblaciones que han estado sujetas por un largo tiempo a pequeñas variaciones en las tasas específicas de mortalidad o en los niveles de fecundidad. Las características esenciales de una población estable son mantenidas si la fecundidad ha cambiado, con tal de que haya tendencias fuertes en la fecundidad, hacia arriba o hacia abajo, existentes 15 o 20 años antes de la fecha en que la población es observada. Recientes cambios en la mortalidad pueden afectar la estructura de la población en edades adultas, pero se debe ver que el efecto sobre la estimación de la integridad del registro de defunciones puede generalmente ser sostenido dentro de ciertos límites de tolerancia.

Antes de mostrar cómo la estimación de la integridad relativa del registro del número de defunciones y personas puede ser derivado del registro de defunciones y personas por edad, nótese que puede ser construida una tabla de vida para una población estable directamente a partir de la distribución del registro de defunciones por edad, o a partir de la distribución por edad de la población.

El punto de partida es la fórmula convencional para obtener el número de personas de edad x en una población estable:

$$N(x) = B \exp(-rx) [l(x)/l(0)]$$
 (1)

donde, para una población dada en un año dado, N(x) es el número de personas de edad x, B es el número de nacimientos, y r es la tasa anual de crecimiento. Usamos la notación de una tabla de vida estándar en todo, excepto que lx ha sido reemplazada por l(x). De (1) se tiene que:

$$l(x)/l(0) = [N(x)/B] \exp(-rx)$$
 (2)

y, de forma más general, que:

$$l(x)/l(a) = [N(x)/N a] \exp r(x - a)$$
(3)

^{*} Preston, Samuel; Coale, Ansley J.; Trussell, James; y Weinstein, Maxime, 1980. Estimating the completeness of reporting of adult deaths in populations that are approximately stable. *Population Index* (Princeton, N.J.) 46 (2): 179-202.

Para construir una tabla de vida con un radix de 1.0 a la edad 10 de una distribución por edad de personas en una población que se supone estable arriba de la edad 10, se puede estimar N(10) como una décima parte del número de personas entre las edades exactas 5 y 15, y calcular ${}_5L_{\rm X}-{}_5/l(10)$ como . ${}_5N_{\rm X}/N(10)$ exp $r(x-10+2.5);\ l(x)/l(10)$ es estimada como $({}_5L_{\rm X}-{}_5+{}_5L_{\rm X})/[10 \cdot l(10)]$.

El número de defunciones a la edad x en cualquier población es $N(x) \cdot \mu(x)$, donde $\mu(x)$ es la tasa de mortalidad a la edad x. Deduciendo de la ecuación (1) que el número de defunciones a la edad x en una población estable es

$$D(x) = [B/l(x)] \exp(-rx) l(x) \mu(x)$$
(4)

En una población estacionaria con las mismas tasas de mortalidad, y con tasas anuales de natalidad igual al rádix, 1(0), la tasa de crecimiento es cero, así que llega a ser, para dicha población,

$$d_0(x) = l(x) \mu(x),$$
 (5)

donde $d_0(x)$ es el número de defunciones a la edad x en una población estacionaria. Dividiendo (5) por (4), tenemos que

$$d_0(x)/D(x) = [l(0)/B] \exp(rx),$$
 (6)

o que:

$$d_0(x) = C \cdot D(x) \exp(rx) \tag{7}$$

donde C es una constante. Para construir una tabla de vida con un rádix de 1.0 a la edad 10 a partir de la distribución del número de defunciones por edad en una población estable, se puede hacer uso de la igualdad en una tabla de vida entre

l(a) y el número de defunciones $[\sum_{x=a}^{\omega} d_0(x)]$ arriba de la edad a. Así la constan-

te en la ecuación (7) puede ser seleccionada tal que Σ $d_0(x) = 1.0$; i.e., C =

etc. El cálculo numérico puede estar basado en las defunciones tabuladas en intervalos de edad de 10 a alguna edad avanzada, por ejemplo, 85, y las defunciones por encima de los 85 listarlas como un solo número. Entonces l(a) sería calculada de 10 a 80 a través de los pasos siguientes:

$$C = 1/\sum_{10}^{80} \left[{}_{5}D_{x} \exp\left[r(x-10+2.5)\right] + D(85+) \exp\left[r[75+e(85)]\right] \right]$$
 (8)

donde e(85) es la esperanza de vida a la edad 85. Entonces l(10) = 1.0, y:

$$l(a) = C \begin{cases} \begin{cases} 80 \\ \Sigma \end{cases} & \left[5D_x \exp\left[r(x-10+2.5)\right] + D(85+) \exp\left[r\left[75 + e(85)\right]\right] \right] \end{cases}$$
(9)

Resumiendo las dos alternativas presentadas anteriormente se tiene que:

1) Una tabla de vida puede ser construida a partir de una población estable vía la multiplicación del número de personas en cada edad por $\exp(ra)$, obteniendo la serie l(a), y el rádix puede ser puesto a cualquier edad conveniente.

2) Una tabla de vida puede ser construida a partir de la distribución de las defunciones, multiplicando el número de defunciones en cada edad por $\exp(ra)$, obteniendo la serie $d_0(a)$, y l(a) puede entonces ser determinada sumando los valores $d_0(x)$ arriba de la edad a, con el rádix también puesto a cualquier edad conveniente.

Tasas específicas de mortalidad podrían ser calculadas a partir del número de defunciones registradas y del número de personas en cada intervalo de edad. Supóngase que las defunciones registradas son agrupadas en grupos quinquenales de edad hasta la edad 85, en un período dado, y en un intervalo abierto para las personas arriba de 85, y que un censo se levantó a mitad del mismo período listando a la población de acuerdo con la misma clasificación por edad. Valores de $_5m_x$ (para $_5m_x$) y $_5m_x$ 0 podrían ser calculados bajo el supuesto de que en una tabla de vida los valores $_5m_x$ son iguales a los valores $_5m_x$ de la población; usando la aproximación:

$${}_{5}q_{x} = \frac{5 \cdot ({}_{5}m_{x})}{1 + (2.5) ({}_{5}m_{x})} \tag{10}$$

y la relación l(x+5) = l(x) (1 \div $_5q_x$), l(x) para x = 15 a 85 podría ser determinado, con un rádix l(10) de 1.0 a la edad 10.

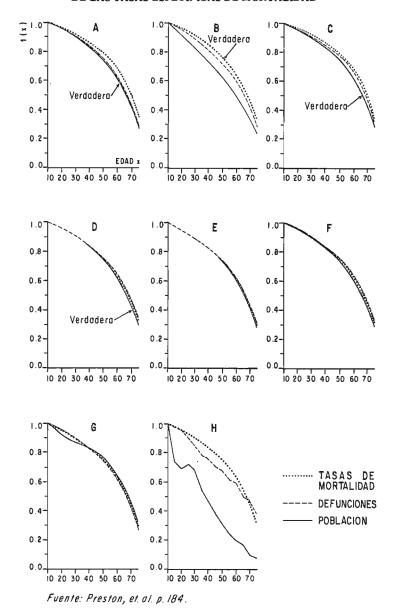
La compración de estas tres tablas de vida —una derivada de la tasa de crecimiento y la distribución de la población, otra de la tasa de crecimiento y la distribución de las defunciones, y la tercera de las tasas de mortalidad calculadas a partir del registro del número de defunciones y de personas— podrían servir para revelar al investigador si el supuesto de estabilidad y la exactitud de los datos fundamentales registrados para su construcción son aproximadamente correctos, en cuyo caso todas las tablas coincidirían, o que los supuestos son violados, en cuyo caso ellas diferirían.

En el modelo descrito en Preston et al. (1980), los autores señalan, después de mostrar la construcción de tablas de vida a partir de las distribuciones por edad antes señaladas, que la función l(x) calculada multiplicando la distribución por edad de la población por e^{rx} , conserva los padecimientos y sesgos de la distribución por edad registrada. Debido a la acumulación por edad, a otras formas de registro por edad erróneas, y a omisiones diferenciales, el registro de la estructura por edad de la población algunas veces posee una tenue semejanza con la verdadera distribución por edad.

La estructura por edad de las curvas l(x) generadas al multiplicar la distribución de las defunciones por e^{rx} y por el cálculo estándar de las tasas específicas

por edad de mortalidad, son monótonas y relativamente suaves. La función l(x) derivada de las defunciones y la tasa de crecimiento es el resultado de acumular la distribución porcentual estimada de defunciones en una población estacionaria de las edades más avanzadas. Asciende monótonamente trazando la curva hacia atrás desde cerca del cero en las edades mayores al 1.0 a la edad 10. Las defunciones acumuladas deben aumentar cuando disminuye la edad porque el número estimado de defunciones en cada intervalo de edad de la población estacionaria es necesariamente positivo. La tabla de vida basada en la transformación convencional de m_x a q_x decrece monótonamente de la edad 10 a los valores l(x) más avanzados, donde cualquier nq_x se obtiene al restar l(x+n) de l(x).

Los autores muestran los efectos de varios defectos en los datos, o en los supuestos, sobre las tres funciones l(x), los cuales son ilustrados en la figura 1. Las tres series de tablas de vida fueron calculadas por los autores para una población estable hipotética derivada a partir de una tasa de crecimiento específica y una serie específica de tasas específicas de mortalidad por edad; después la población estable ha sido deliberadamente distorsionada en diferentes formas.* En las gráficas de la figura 1 se observan los siguientes efectos:


- 1) Subregistro uniforme de defunciones del 20% (gráfica A), l(x) calculada a partir de la mortalidad específica por edad es elevada; l(x) de la distribución por edad de las personas o de las defunciones no es afectada.
- 2) Una estimación incorrecta de la tasa de crecimiento de 0.020 en lugar de una tasa de 0.025 (gráfica B).
- 3) Violación del supuesto de la integridad constante del registro de defunciones por edad, por lo que la integridad aumenta al avanzar la edad (gráfica C).
- 4) Un aumento sobreestimando la edad de las defunciones de las personas viejas a partir de los 55 años (gráfica D).
- 5) Un aumento sobreestimando la edad de las personas viejas, empezando a los 55 años (gráfica E).
- 6) Un aumento sobreestimando la edad de las personas y defunciones de las personas viejas empezando a los 55 años de edad (gráfica F).
- 7) Una distribución no-estable de la población y de las defunciones, resultado de una población (inicialmente estable, y en todo tiempo con la misma fecundidad específica por edad listada como una población similar) que ha alcanzado una e(0) de 50 años, después un incremento en 25 años de una e(0) de 37.5; (gráfica G).
- 8) Una distorsión de la distribución por edad de las personas y las defunciones por la imposición de desviaciones proporcionales de la estabilidad que es encontrada en las mujeres de la India registradas en el censo de 1911. (gráfica H).

Cualquiera de los tres métodos anteriormente descritos puede ser usado para calcular una tabla de vida. Una tabla basada en las tasas específicas de mortalidad requiere esencialmente un registro completo de las defunciones y de la población; cada uno de los otros dos cálculos empleados solamente parten de la información utilizada. El método de Preston, et al., hace uso de las distribuciones de las defun-

^{*} La población estable fue tomada a partir de la tabla modelo de vida femenína, región Oeste $[e\ (0)=50\ a\~nos]$ y una tasa de crecimiento del 2.5% (Coale y Demeny, 1966).

Figura 1

Efectos de distorsiones sobre tablas de vida calculadas a partir de las distribuciones por edad de la población y defunciones y de las tasas específicas de mortalidad

ciones y de la población por edad. Debido a la acumulación de las defunciones y personas de las edades avanzadas a edades tempranas, esto es relativamente robusto en la presencia del registro erróneo por edad.

El método depende de la igualdad, en cualquier cohorte no sujeta a ganancias o pérdidas por migración, del número de personas vivas a la edad a y el número de defunciones que esas personas experimentarán hasta el último sobreviviente. En una población estable, el número de defunciones que serán experimentadas (bajo el riesgo constante de la mortalidad) puede ser estimado a partir del número de defunciones ocurridas registradas a partir de la edad a. Específicamente, donde N(a) es el número de personas a la edad a en una población estable, y D(x) es el número de defunciones a la edad x:

$$N(a) = \sum_{x=a}^{\omega} D(x) \exp \left[r(x-a) \right]$$
 (11)

D(x) es el número de defunciones experimentadas por las personas con la edad x, sujetas a la tasa de mortalidad $\mu(x)$. Cuando las personas que ahora tienen la edad a alcancen la edad x (x-a años a partir de ahora) la población de edad x habrá crecido en un factor exp [r(x-a)], y con las tasas de mortalidad supuestas constantes, el número de defunciones de personas que tienen ahora la edad a que experimentarán a la edad x serán más grandes que el número progresivo por el mismo factor. Así, el lado derecho de la ecuación (11) es el número total de defunciones de personas de edad a experimentadas si la mortalidad y la composición por edad permanecen fijas, y este número es precisamente igual, en una población estable, al número que ahora tiene la edad a.

Sea
$$\hat{N}(a) = \sum_{x=a}^{\omega} D(x) \exp [r(x-a)]$$

una estimación del número de personas a la edad a, una estimación derivada a partir del número registrado de defunciones de todas las edades arriba de a, y de la tasa de crecimiento. Si la población es genuinamente estable, la tasa de crecimiento estipulada es la correcta, y las defunciones y población registradas son las que precisamente se dan, entonces $\hat{N}(a)$ se igualará a N(a). Si las defunciones están subregistradas en alguna proporción fija (digamos 20%), $\hat{N}(a)/N(a)$ será menor que 1.0 (0.80 en este ejemplo). En la práctica se tendría que usar la aproximación discreta $_5\hat{N}_a/_5N_a$, la razón de la estimación para la población entre las edades a y a+5.

El método de Preston, et al., considera inapropiado estimar la integridad del registro de defunciones relativo a la enumeración de la población a partir de un único cociente de $_5\hat{N}_a/_5N_a$, donde el número en una edad particular está sujeto a sobreregistro o subregistro debido al reporte erróneo por edad o a omisión diferencial de personas en un conjunto particular de edades. Por lo que recomiendan

el cálculo de
$$\hat{N}(a+)/N(a+)$$
 (donde $\hat{N}(a+) = \sum_{a=0}^{\infty} \hat{N}_{x}$), para valores secuenciales

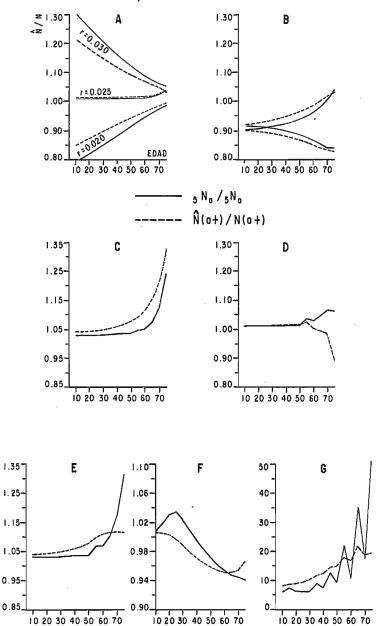
de a a partir de 5 o 10 a 60, 70 u 80. Con registro consistente de defunciones y población, mínimo error de registro por edad, y una estimación válida de la tasa de crecimiento, $\hat{N}(a+)/N(a)$ sería aproximadamente constante cuando a creciera, a un nivel promedio igual a la integridad del registro de defunciones relativo a la

integridad de la enumeración de la población. Los autores muestran cómo la falta de estabilidad, error en el registro por edad, cobertura diferencial del registro de defunciones a edades diferentes, o error en la estimación de la tasa de crecimiento afectan la secuencia de los cocientes ${}_5\hat{N}_a/{}_5N_a$ y $\hat{N}(a+)/N(a+)$. Con lo que la predicción natural del efecto de defectos particulares en los datos sobre las secuencias es una herramienta de diagnóstico adicional para detectar (y algunas veces para corregir) los defectos.

En las gráficas de la figura 2 se observan los siguientes efectos sobre las series ${}_5\hat{N}_a/{}_5N_a$ y $\hat{N}(a+)/N(a+)$:

a) una incorrecta estimación de r (gráfica A); b) cobertura del registro de defunciones que varía con la edad (gráfica B); c) sobreestimación por edad de las defunciones (gráfica C); d) sobreestimación por edad de las personas (gráfica D); e) sobreestimación tanto de defunciones como de personas vivas (gráfica E); f) una población desestabilizada con una reciente historia de descenso de la mortalidad (gráfica F); y g) fuerte error en el registro por edad de personas y de defunciones del tipo que duplicaría la incorrecta distribución por edad de la población femenina de la India registrada en el censo de 1911 (gráfica G).

Otros de los puntos que muestran los autores, en cuanto a los efectos de las distorsiones se refiere, es con respecto a la tasa de "natalidad" por encima de la edad a [N(a)/N(a+)] y la tasa de mortalidad por encima de la edad a [D(a+)/N(a+)]. En la figura 3 se observan los siguientes efectos sobre las gráficas de D(a+)/N(a+) contra N(a)/N(a+), para una población estable hipotética: a) sin distorsiones (gráfica A); b) aumento de la integridad del registro con la edad (gráfica B); c) desplazamiento hacia adelante de la edad al morir (gráfica C); d) desplazamiento hacia adelante de la edad de la población (gráfica D); e) desplazamiento hacia adelante de las edades al morir y de la población (gráfica E); f) población sujeta a la disminución de la mortalidad en los últimos 25 años (gráfica F); g) distorsiones del censo de la India, 1911 (gráfica G).


Finalmente los autores señalan que:

- a) Desafortunadamente no es fácil distinguir entre algunas de las violaciones subyacentes de los supuestos. Por ejemplo, la selección de una tasa de crecimiento demasiado pequeña y un desplazamiento hacia arriba de las defunciones, producen un crecimiento de la secuencia de \hat{N}/N . En forma similar, desplazamientos hacia abajo de las defunciones (o integridad del registro que decrece con la edad) y una selección de r demasiado grande producen una caída de la secuencia de N/N. Al encontrar una secuencia elevada, debe decidirse cuál de las dos distorsiones es más verosímil, para efectuar una corrección. Si se decide que r es demasiado pequeña, simplemente se probará un valor mayor. Si las defunciones están desplazadas hacia arriba, puede hacerse una corrección similar.
- b) Si la secuencia $_5 \hat{N}a|_5 Na$ es muy irregular, y si los puntos d(a+), b(a+) están alejados de lo lineal, los cálculos sintéticos sugieren que la mediana de los ocho primeros valores de $\hat{N}(a+)$ /N(a+) podrían proveer una estimación robusta de la cobertura. Ni las severas distorsiones de las distribuciones por edad ni la desestabilización causada por disminución reciente de la mortalidad introducen errores en la estimación de la cobertura que son superiores a algunos porcentajes.

A continuación se resume el método para calcular \hat{N} : el problema caracter ístico del cálculo es el intervalo de edades avanzadas el así llamado "intervalo abier-

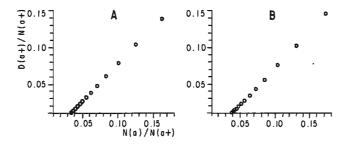
Figura 2

Efecto de distorsiones sobre los valores de \hat{N}/N

Fuente: Preston, et al. p. 187.

10 20 30 40 50 60 70

1.25-


1.05


0.95-

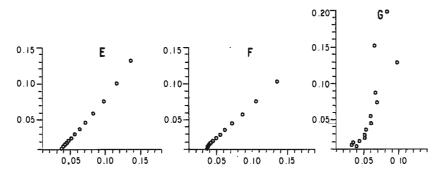

0.85.

Figura 3

Efecto de distorsiones sobre la gráfica de d(a+)/N(a+) CONTRA N(a)/N(a+)

Fuente: Preston, et al. p. 191.

to". Si A es el límite inferior del intervalo abierto, puede fácilmente verificarse que $\hat{N}(A) \doteq D(A+)$ [1+re(A)], y $\hat{N}(A+) \doteq \hat{N}(A+) \cdot e(A)$ $(1-r\overline{y})$, donde e(A) es la esperanza de vida a la edad A, y $\overline{y} = [(\text{edad media de la población estacionaria por encima de la edad <math>A)-A]$. Con información sobre mortalidad, desconociendo la cobertura y estando sujeto a grandes márgenes de error de registro por edad en las edades avanzadas, no es posible calcular e(A) y \overline{y} a partir de dichos datos. Los autores sugieren tomar los valores aproximados de la siguiente tabla:

Tabla 1 Mortalidad baja Mortalidad alta Mortalidad media $(e_{10}=45)$ $(e_{10}=55)$ $(e_{10}=50)$ e (A) e (A) e (A) 9.9 11.2 12.3 65 70 7.7 9.6 8.8 6.7 7.3 75 5.9 5.0 5.4 80 4.5 85 3.3 3.6 3.8

FUENTE: Preston et al. p. 183.

Esos valores son derivados de las tablas de vida modelo. Cálculos similares y demuestran que puede ser aproximadamente cercana a 2/3 e(A). En poblaciones específicas, aproximadamente la esperanza de vida indicada a la edad 10, toma valores que podrían ser bastante diferentes. Con el fin de determinar los valores aproximados de e(10) en una población, recomiendan calcular una tabla de vida basada en la distribución por edad de las defunciones y una estimación de r, puesto que dicha tabla de vida no estaría afectada por el subregistro uniforme de las defunciones. Podría sospecharse que algunas repeticiones de este proceso serían necesarias si cálculos subsecuentes revelaran que la selección de r es incorrecta o que las defunciones no son subregistradas uniformemente. Cálculos de prueba sugieren que dicho proceso iterativo no es necesario. Si A es 75 o más, errores en la estimación de e(A) y \overline{y} tienen poco efecto sobre $\hat{N}(a)$ o $\hat{N}(a+)$ para edades menores de los 60 años. Una vez que los valores $\hat{N}(A)$ y $\hat{N}(A+)$ hayan sido calculados para el intervalo abierto por el empleo de los valores de e(A) se estiman los valores $\hat{N}(a)$, ${}_5\hat{N}_{a-5}$ y $\hat{N}(a-5+)$ empleando las siguientes relaciones.

$$\hat{N}(a-5) = \hat{N}(a) \exp(5r) + {}_{5}D_{a-5} \exp(2.5 r)$$

$${}_{5}N_{a-5} = 2.5 \left[\hat{N}(a) + \hat{N}(a-5)\right] a = A, A-5, A-10, \dots 10$$

$$\hat{N}(a=5+) = {}_{5}\hat{N}_{a-5} + \hat{N}(a+)$$

A continuación se ejemplifica el método descrito para estimar el grado de registro de la mortalidad adulta en México. Se tomó como información las estructuras por edad de la población y de las defunciones, de los hombres y mujeres en 1930. Para ello se recurrió al V Censo Nacional de Población y a las Estadísticas Vitales Mexicanas.

Las estructuras por edades antes mencionadas, se tomaron sin modificarlas, es decir, tal y como en las fuentes originales se daban. Para el cálculo de las tablas de vida se tomó como tasa de crecimiento, r=0.01727, la cual es una tasa de crecimiento intercensal; dicha tasa de crecimiento se utilizó para obtener la serie de los sobrevivientes, l_x , que se genera a partir de la estructura por edad de las defunciones. También se utilizó para obtener la población al 30 de junio de 1930, y con ella estimar la serie l_x a partir de las tasas específicas de mortalidad. La esperanza de vida a los 80 años, necesaria para la aplicación del método, se tomó como 3.3 años; dicho valor es el sugerido por los autores suponiendo alta mortalidad y una esperanza de vida a los 10 años de 45 años.

En los cuadros 1 y 2 se sintetizan los cálculos de las tablas de vida, obtenidas a partir de las estructuras por edad de la población, defunciones y tasas de mortalidad, tanto para hombres como para mujeres en México, en 1930. En las gráficas 1 y 2 se muestran, para hombres y mujeres en 1930 en México, las distribuciones de la serie l_x obtenida a partir de las distribuciones antes señaladas.

Los cuadros 3 y 4 resumen los cálculos llevados a cabo, para estimar el grado de registro de la mortalidad adulta en México, para hombres y mujeres en 1930; el comportamiento gráfico de la serie D(a+)/N(a+) contra la serie $\hat{N}(a+)/N(a+)$, se muestran en las gráficas 3 y 4 para hombres y mujeres respectivamente; y en las gráficas 5 y 6 las distribuciones de las series ${}_5\hat{N}_a/{}_5N_a$ y $\hat{N}(a+)/N(a+)$.

Algunas de las consideraciones que se desprenden de la observación de las gráficas son: la tabla de vida que se genera a partir de la estructura por edad de la población, muestra para los hombres, una distribución semejante a la población sujeta a una disminución de la mortalidad en los últimos veinticinco años; y la tabla de vida obtenida a partir de la estructura por edad de la población para las mujeres muestra distorsiones, de los 10 a los 50 años semejantes a las de la India en su censo de 1911, sólo que en este caso se tienen por encima de las series l_x de defunciones y tasas, la serie l_x de la población. Las gráficas 3 y 4 [D(a+)/N(a+) contra N(a)/N(a+)] muestran efectos de distorsiones semejantes a las observadas en el censo de la India en 1911, tanto para los hombres como para las mujeres. Finalmente las gráficas 5 y 6 (distribuciones de $_5\hat{N}_a/_5N_a$, $\hat{N}(a+)/N(a+)$) tanto en el caso de los hombres como en el de las mujeres, el efecto de distorsión es semejante al que muestran los autores con una población que tiene un desplazamiento hacia arriba de la edad al morir y la edad de la población, aunque también es parecido al caso del censo de la India de 1911.

Cabe señalar que los autores también ejemplifican el método para casos como las mujeres de Brasil en 1961 y las mujeres de Corea en el período 1965-1975, en ambos casos, a diferencia del caso hombres y mujeres en 1930 en México, la tendencia de la serie $\hat{N}(a+)/N(a+)$ oscila alrededor de un solo valor, en el caso de las mujeres de El Salvador de 1961 alrededor de 0.8 y el de las coreanas alrededor de 0.6. Así los autores adoptan como criterio, tomar la mediana de un conjunto de valores de la serie antes señalada, para el caso de los ejemplos presentados.

Cuadro 1 MEXICO: CÁLCULO DE LAS TABLAS DE VIDA A PARTIR DE LAS ESTRUCTURAS POR EDAD DE LA POBLACIÓN, DEFUNCIONES Y TASAS DE MORTALIDAD, HOMBRES, 1930.

Edad	₅ N _x ^a	5 N _X ^m b	₅ D _x ^c	₅ L _x d	1 p e	f	1 ^D g	5 m _x h	1 ^{M i}
10	882 039	883 903	5169	4.48586	1.00000	199 120.27680	1.00000	0.00585	1.00000
15	792 389	794 064	5960	4.99792	0.94838	193 723.22060	0.97290	0.00751	0.97117
20	734 715	736 268	7737	4.44100	0.94389	186 939.01220	0.93882	0.01051	0.93537
25	687 269	688 721	8267	4.70048	0.91415	177 337.78200	0.89061	0.01200	0.88748
30	542 978	544 125	7706	3.90073	0.86012	166 153.60570	0.83444	0.01416	0.83579
3.5	500 587	501 645	8101	3.92052	0.78213	154 788.18040	0.77736	0.01615	0.77863
40	380 027	380 830	7186	3.24476	0.71653	141 762.66350	0.71194	0.01887	0.71820
45	313 708	314 371	6990	2.92007	0,61648	129 166.25230	0.64868	0.02223	0.65349
50	254 878	255 317	6583	2.58644	0.55065	115 808.36230	0.58160	0.02577	0.58468
55	163 088	163 433	5112	1.80423	0.43907	102 093.66920	0.51272	0.03128	0.51390
60	184 768	185 158	8186	2.22842	0.40327	90 483.09035	0.45441	0.04421	0.43935
65	90 013	90 203	4983	1.18352	0.34119	70 213.89947	0.35262	0.05524	0.35190
70	69 849	69 997	5627	1.00124	0.21848	56 762,83910	0.28507	0.08039	0.26650
75	36 189	36 265	3660	0.56552	0.15668	40 203.47842	0.20191	0.10092	0.17730
80	28 265	28 325	3793	0.48155	0.10471	28 461.28342	0.14294	0.13391	0.10586
85	17 469	17 506	3985	0.32445	0.08060	15 194.92455	0.07631	0.22764	0.05276

e
$$l_{x}^{P} = 1/10 \left(\int_{-\infty}^{\infty} L_{x-5} + \int_{\infty}^{\infty} L_{x} \right)$$

Estructura por grupos quinquenales de edad observada, tomada del V Censo Nacional de Población. Estructura por grupos quinquenales de edad observada, proyectada al 30 de junio de 1930.

Promedio de defunciones registradas en los años 1929-1931, por grupos quinquenales de edad.

d
$$_{5}L_{x} = (_{5}N_{x}/N(10)) \cdot (\exp{(r(x-10+2.5))}); donde N(10) = 1/10 (_{5}N_{5} + _{5}N_{10})$$

e $l_{x}^{P} = 1/10 (_{5}L_{x-5} + _{5}L_{x})$

80

f Valores de $\sum_{x} |_{5}D_{x} \cdot \exp{(r(x-10+2.5))} + D(85+) \exp{(r(75+e(85)))} |$

g
$$l_x^D = Cx$$
 (f) donde: $C = 1/\sum_{10}^{80} |_{5}D_x \cdot exp (r (x - 10 + 2.5)) + D(85 +) exp (r (75 + e(85))) |_{10}$

$$h_{5m_X} = {}_5D_X/{}_5N_X^m$$

i
$$l_{X-5}^{M} = l_{X}^{M} (1 - 5q_{X}); donde _{5}q_{X} = (5 \cdot 5m_{X})/(1 + 2.5 \cdot 5m_{X})$$

Cuadro 2 MÉXICO: CÁLCULO DE LAS TABLAS DE VIDA A PARTIR DE LAS ESTRUCTURAS POR EDAD DE LA POBLACIÓN, DEFUNCIONES Y TASAS DE MORTALIDAD, MUJERES, 1930.

Edad	a	b	С	d	e	f	g	h	i
х	5 N _x	₅ N _x ^m	5 D x	5 L _x	1 P x		l ^D _x	5 m _x	1 M
10	804 025	805 724	4459	4,35300	1.00000	200 180.675	1,00,000	0.00553	1.00000
15	892 277	894 163	6514	5.26648	0.96195	195 524.944	0.97674	0.00729	0.97273
20	842 218	843 998	8043	5.41935	1.06858	188 110.123	0.93970	0.00953	0.93795
25	773 330	774 964	8357	5.42487	1.08442	178 129,162	0.88984	0.01078	0.89430
30	581 105	582 333	7369	4.44405	0.98689	166 823.227	0.83336	0.01265	0.84736
35	528 873	529 991	7368	4.40936	0.88534	155 954.836	0,77907	0.01390	0.79541
40	427 258	428 161	6417	3.88345	0.82928	144 107.902	0.71989	0.01499	0.74198
45	321 042	321 720	5743	3.18120	0.70647	132 859.479	0.66370	0.01785	0.68838
50	289 495	290 107	5885	3.12732	0.63085	121 884,606	0.60887	0.02029	0.62956
55	162 441	162 784	4567	1.91304	0.50404	109 624.091	0.54763	0.02806	0.56880
60	198 588	199 008	8050	2.54967	0.44627	99 251.338	0.49581	0.04045	0.49426
65	85 809	85 990	4934	1.20107	0.37507	79 318.894	0.39624	0.05738	0.40347
70	74 771	74 929	5876	1.14094	0.23420	66 000.104	0.32970	0.07842	0.30224
75	33 856	33 928	3676	0.56321	0.17042	48 707.976	0.24332	0.10835	0,20315
80	32 313	32 381	4616	0.58602	0.11492	36 914,449	0.18441	0.14255	0.11656
85	20 211	20 254	5447	0.40517	0.09912	20 769 574	0.10375	0.26893	0.05531

a Estructura por grupos quinquenales de edad observada, tomada del V Censo Nacional de Población, Estructura por grupos quinquenales de edad observada, proyectada al 30 de junio de 1930.

c Promedio de defunciones registradas en los años 1929-1931, por grupos quinquenales de edad.

d ₅L_x = (₅N_x/N(10)) * (exp (r (x - 10 + 2.5))); donde N (10) = 1/10 (₅N₅ + ₅N₁₀)

$$e_{1v} = 1/10 (sL_{v.5} + sL_{v})$$

f Valores de
$$\sum_{x}^{50} |_{5}D_{x} \cdot \exp(r(x-10+2.5)) + D(85+) \exp(r(75+e(85))) |$$

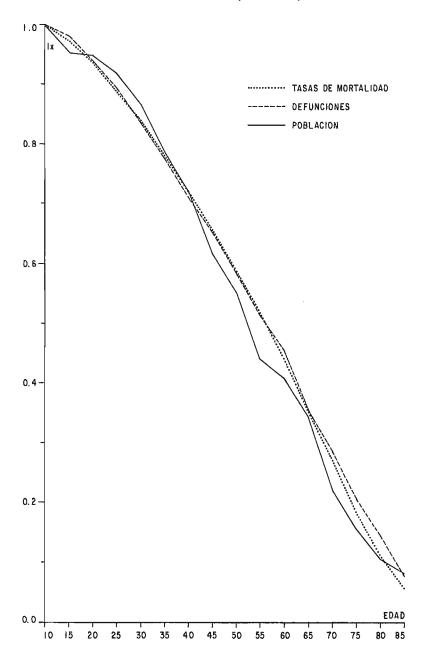
e
$$1_{x}^{D} = 1/10 (_{5}L_{x-5} + _{5}L_{x})$$

f V_{alores} de $\Sigma \mid _{5}D_{x} \cdot \exp(r(x - 10 + 2.5)) + D(85 +) \exp(r(75 + e(85))) \mid _{x}$
g $1_{x}^{D} = Cx (f)$ donde: $C = 1/\frac{80}{2} \mid _{5}D_{x} \cdot \exp(r(x - 10 + 2.5)) + D(85 +) \exp(r(75 + e(85))) \mid _{10}$

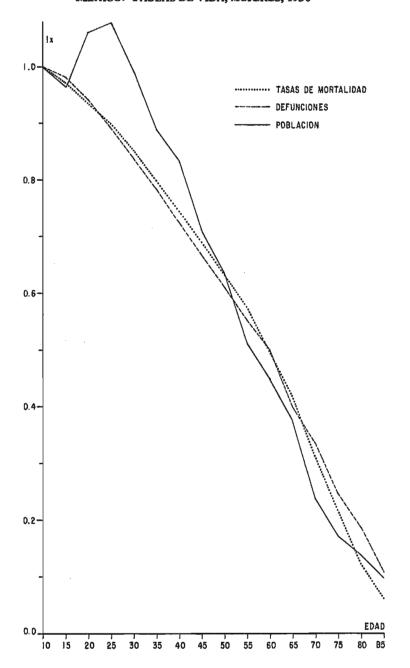
$$h_{5m_x} = {}_{5}D_x/{}_{5}N_x^m$$

$$I_{X-5}^{M} = I_{X}^{M} (1 - sq_{X}); donde sq_{X} = (5 \cdot sm_{X}) / (1 + 2.5 \cdot sm_{X})$$

Cuadro 3 México: defunciones y población por edad y valores de $\hat{N}(a)$, $_{5}\hat{N}_{a}$, $\hat{N}(a+)$, $_{5}\hat{N}_{a}/_{5}Na$ y $\hat{N}(a+)/N(a+)$, HOMBRES, 1930

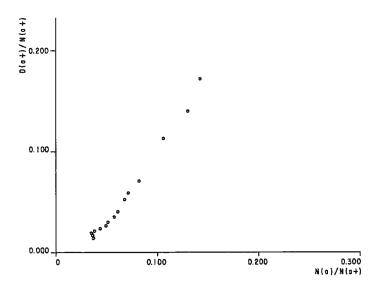

Edad	5 Da	$_{5}N_{a}$	N(a+)	Ñ(a)	$_{5}$ \hat{N}_{a}	Ñ(a+)	$_5$ $\hat{N}_a/_5$ Na	$\hat{N}(a+)/N(a+)$
0	113 633	1 268 968	8 115 935	370 827	1 505 363	8 396 739	1.186	1.135
5	13 425	1 168 736	6 846 967	231 318	1 076 600	6 891 376	1.921	1.006
10	5 169	882 039	5 678 231	199 322	943 005	5 814 776	1.069	1.024
15	5 960	792 389	4 796 192	177 880	838 338	4 871 771	1.058	1.016
20	7 737	734 715	4 003 803	157 455	736 183	4 033 433	1.002	1.007
25	. 8 267	687 269	3 269 088	137 018	636 955	3 297 250	0.927	1.009
30	7 706	542 978	2 581 819	117 764	546 010	2 660 295	1.006	1.030
35	8 101	500 587	2 038 841	100 640	462 988	2 114 285	0.925	1.037
40	7 186	380 027	1 538 254	84.555	388 080	1 651 297	1.021	1.073
45	6 990	313 708	1 158 227	70 677	322 030	1 263 217	1.027	1.091
50	6 583	254 878	844 519	58 135	262 890	941 187	1.031	1.114
55	5 112	163 088	589 641	47 021	213 138	678 297	1.307	1.150
60	8 186	184 768	426 553	38 238	163 663	465 159	0.886	1.091
65	4 983	90 013	241 785	27 231	118 593	301 496	1.318	1.247
70	5 627	69 849	151 772	20 206	83 378	182 903	1.194	1.205
75	3 660	36 189	81 923	13 145	54 243	99 525	1.499	1.215
80	3 793	28 265	45 734	8 552	31 910	45 282	1.129	0.990
85	3 985	17 369	17 469	4 212	13 372	13 372	0.765	0.765

Cuadro 4 $\label{eq:Mexico:Defunciones y Población por edad y valores de <math>\hat{N}(a)$, $_5\hat{N}_a$, $\hat{N}(a+)$, $_5\hat{N}_a/_5N_a$ y $\hat{N}(a+)/N(a+)$, $_6N_a$,

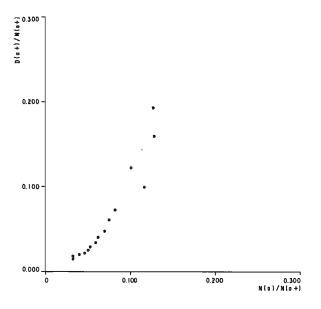

Edad	$_{5}D_{a}$	₅ N _a	N(a+)	Ñ(a)	$_{5}\hat{N}_{a}$	Ñ(a+)	$_{5}\hat{N}_{a}/_{5}N_{a}$	$\hat{N}(a+)/N(a+)$
0	104 663	1 241 553	8 433 694	362 467	1 486 128	8 547 217	1.197	1.013
5	12 883	1 124 529	7 192 141	231 984	1 081 090	7 061 089	0.961	0.982
10	4 459	804 025	6 067 612	200 452	950 120	5 979 999	1.182	0.986
15	6 514	892 277	5 263 587	179 596	845 238	5,029 879	0.947	0.956
20	8 043	842 218	4 371 310	158 499	740 453	4 184 641	9.879	0.957
25	8 357	773 330	3 529 092	137 682	639 923	3 444 188	0.827	0.976
30	7 369	581 105	2 755 762	118 287	549 325	2 804 265	0.945	1.018
35	7 368	528 873	2 174 657	101 443	468 590	2 254 940	0.886	1.037
40	6 417	427 258	1 645 784	85 993	396 815	1 786 350	0.929	1.085
45	5 743	321 042	1 218 526	72 733	334 870	1 389 535	1.043	1.140
50	5 885	289 495	897 484	61 215	279 323	1 054 665	0.965	1.175
55	4 567	162 441	607 989	50 514	231 185	775 342	1.423	1.275
60	8 050	198 588	445 548	41 960	181 848	544 157	0.916	1.221
65	4 934	85 809	246 960	30 779	135 715	362 309	1.582	1.467
70	5 876	74 771	161 151	23 507	98 605	226 594	1.319	1.406
75	3 676	33 856	86 380	15 935	67 578	127 989	1.996	1.482
80	4 6 1 6	32 313	52 524	11 096	42 133	60 411	1.304	1.150
85	5 447	20 211	20 211	5 757	18 278	18 278	0.904	0.904

Gráfica 1

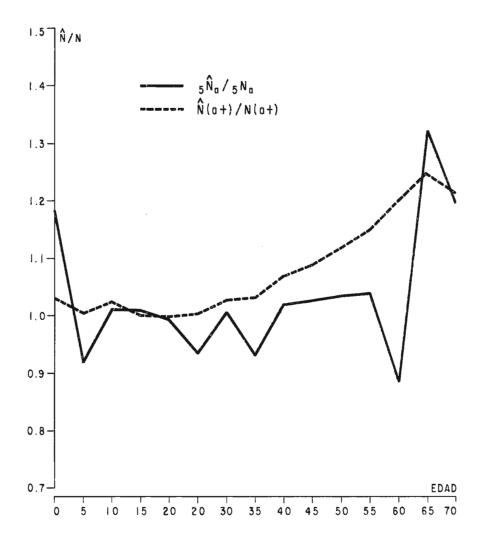
México: Tablas de vida, hombres, 1930



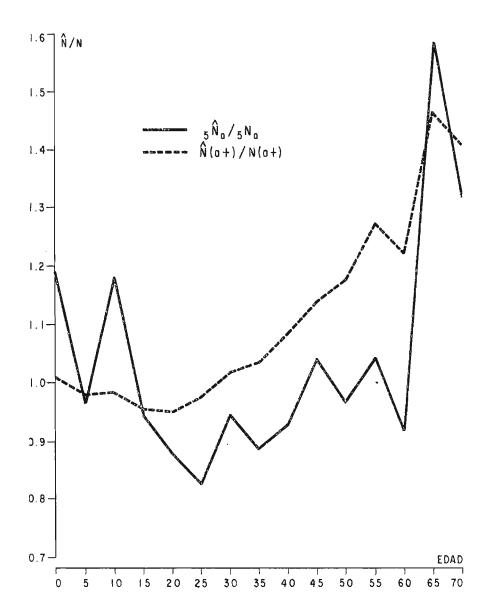
Gráfica 2
México: Tablas de vida, mujeres, 1930


Gráfica 3

MÉXICO: GRÁFICA DE D(a+)/N(a+) CONTRA N(a+)/N(a+), hombres, 1930


Gráfica 4

MÉXICO: GRÁFICA DE D(a+)/N(a+) CONTRA N(a)/N(a+) mujeres, 1930


Gráfica 5

México: Gráfica de n/n, hombres, 1930

Gráfica 6

México: Gráfica de n/n, mujeres, 1930

En el caso de México, tanto para hombres como para mujeres en 1930, la tendencia de la serie, $\hat{N}(a+)/N(a+)$, no es homogénea además de mostrar, en general, un grado de sobreregistro de la mortalidad adulta, lo que contradice lo comúnmente planteado, y esto debido a los efectos de las distorsiones mostradas, tanto en la construcción de las tablas de vida, como en las series que estiman el grado de subregistro de la mortalidad adulta.

A manera de conclusión se puede señalar que, en esta primera etapa de la inverstigación se observan serias distorsiones, sobre todo en las estructuras pos edades de las poblaciones censadas, desde el período 1930 hasta 1980. Para darse cuenta de la magnitud de las distorsiones, basta ver la gráfica 9 que se presenta en el apéndice 1 del presente trabajo, que muestra las distribuciones de las series l_x , obtenidas a partir de las distribuciones por edad de las tasas de mortalidad, defunciones y población

En el apéndice número 2 se muestran las gráficas y cuadros de los valores ${}_5\hat{N}_a/{}_5N_a$, $\hat{N}(a+)/N(a+)$, por sexo, de 1940 a 1970. Dichos valores muestran distorsiones semejantes a las observadas para el caso de 1930. Con el fin de diagnosticar el tipo y la magnitud de dichas distorsiones se observaron las gráficas y los valores de los parámetros N(x)/N(x+) y D(x+)/N(x+), por sexo, y para el mismo período, 1940-1970; dichas gráficas y valores también se presentan en el apéndice 2.

Después de analizar los resultados anteriormente señalados, se observó que una posible distorsión se debía al desplazamiento de las edades, tanto de la población como de las defunciones; por ello, como un primer intento de corregir dichas distorsiones, se calcularon y graficaron los valores $\hat{N}(x+5)+)/N(x+)$ por sexo, para el período 1930-1970 (véase apéndice 3), observándose en general valores más consistentes con la realidad mexicana, ya que se tienen, por un lado valores que muestran grados de subregistro (no como en el caso en que se tenían captados valores que mostraban sobreregistro) y por otro lado, el grado de subregistro es mayor para edades avanzadas. Cabe resaltar que, en general, el grado de subregistro es mayor para el caso de los hombres (véase gráfica 14 del apéndice 3).

Uno de los más recientes aportes sobre el tema de la medición de la integridad del registro de defunciones adultas, fue el hecho por Neil G. Bennett y Shiro Horiuchi,* quienes parten del empleo de la relación obtenida para poblaciones estables, y usada por Preston y sus colegas.

$$N(a) = \int_{-\infty}^{\infty} D^*(x) \exp |r(x-a)| d_x \qquad (1)$$

Siendo la fórmula con la cual se estima la distribución por edad de la población:

$$\hat{N}(a-5) = \hat{N}(a) \exp |5r| + {}_{5}D_{a-5} \exp |2.5r|$$
 (2)

El método de Preston, et al. (1980) es claramente apropiado para el análisis de

^{*} Bennett, G. Neil y Horiuchi, Shiro; 1981. "Estimating the completeness of Death Registration in a Closed Population". *Population Index* (Princeton, N.J.), 47 (2): 207-222.

poblaciones estables, no obstante, para Bennett y Horiuchi, no es robusto en el contexto de la desestabilización.

Bennett y Horiuchi señalan que cuando una población se desvía de la estabilidad, la tasa de crecimiento natural (r) varía con la edad, en cuyo caso, la tasa de crecimiento natural del total de la población es a menudo una pobre aproximación de r(a), la tasa de crecimiento de la población a la edad (a).

En base a lo anteriormente señalado, los autores proponen la siguiente extensión de la ecuación (2):

$$\hat{N}(a-5) = \hat{N}(a) \exp \left[5 \, {}_{5}r_{a-5} \right] + {}_{5}D_{a-5} \exp \left[2.5 \, {}_{5}r_{a-5} \right], \tag{3}$$

donde $_5r_{a-5}$ es la tasa de crecimiento experimentada por la población que se encuentra entre las edades a-5 y a

Ya calculados los valores de $\hat{N}(a)$ son calculados los valores $_5\hat{N_a}$ de igual forma que en el método de Preston, et al. (1980):

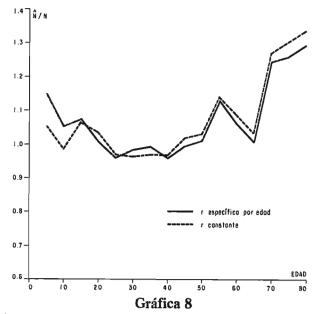
$$_{5}\hat{N}_{a} = 2.5 |\hat{N}(a) + \hat{N}(a+5)|$$
 (4)

Al tratar la estimación del intervalo abierto los autores señalan que el método de Preston, et al., no es necesariamente adecuado en los casos en que se tiene un número limitadamente bajo de defunciones y en edades relativamente avanzadas, siendo en este caso N(a) subestimada. Los autores encuentran la siguiente expresión para estimar la población en el intervalo abierto:

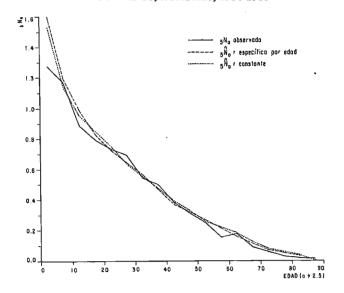
$$N(a) \doteq D(a+) \left[\exp | r(a+) e(a) | - (\cdot | r(a+) e(a) |^2) \right]$$
 (5)

Donde r(a+) es la tasa de crecimiento para el intervalo abierto, y e(a) la esperanza de vida al comienzo del intervalo abierto.

De igual forma que en el caso de Preston, et al., en este caso se estiman, los valores N(a) usando iterativamente la expresión (3).


Finalmente, los autores aplican su método al caso de Suecia y Corea, este último país también fue tomado por Preston, et al. (1980), observando una mayor precisión de la estimación del nivel de integridad del registro de defunciones adultas en poblaciones desestabilizadas.

En nuestro caso, inicialmente ejemplificamos el método de Bennett y Horiuchi para el caso de México, hombres: período 1930-1935. En el cuadro 5 se resume el procedimiento por medio del cual se estiman los valores $_{10}N_{a-5}/_{10}N_{a-5}$, y en la gráfica 7 se dan las secuencias de las estimaciones de la integridad del registro de defunciones, con y sin el supuesto de estabilidad, es decir, empleando el método de Preston, et al. y el de Bennett y Horiuchi; finalmente, en la gráfica 8 se muestran las distribuciones de los valores $_5N_a$, observados y estimados. Después de ser analizadas las gráficas y los valores antes mencionados se observó que la "ganancia" que se lograba, al tomar tasas de crecimiento específicas por edad, no era significativa, observándose el mismo tipo de distorsiones que en el empleo de la tasa de crecimiento constante. Así, se pasó a calcular y graficar los valores $_{10}\hat{N}_a/_{10}N_{a-5}$, para los hombres en 1930-1935, (véase gráfica 15 en el apéndice 3).


Edad	₅ r _a	₅ D _a	5 Na	Ñ(a)	$_{5}\hat{N}_{\mathbf{a}}$	$_{10}\hat{N}_{a-5}/_{10}N_{a-5}$
0	.0139	113 633	1 268 968	391 270.40	1 616 376	
5	.0219	13 425	1 168 736	255 280.08	1 178 306	1.146
10	.0363	5 169	882 039	216 042.37	978 768	1.052
15	.0211	5 960	792 389	175 363.81	819 362	1.074
20	-0010	7 737	734 715	152 279.90	720 897	1.009
25	.0096	8 267	687 269	136 079.09	644 329	0.960
30	.0163	7 706	542 978	121 652.70	565 936	0.984
35	.0306	8 101	500 587	104 721.70	467 754	0.991
40	.0177	7 186	380 027	82 379.93	377 200	0.960
45	.0152	6 990	313 708	68 500.06	313 135	0.995
50	.0116	6 583	254 878	56 753.89	259 762	1.008
55	.0242	5 112	163 088	47 150.93	210 264	1.125
60	.0109	8 186	184 768	36 954.81	159 952	1.064
65	.0221	4 983	90 013	27 026.14	116 265	1.005
70	.0129	5 627	69 849	19 479.96	80 723	1.232
75	.0202	3 660	36 189	12 809.06	52 273	1.254
80	.0032	3 7.93	28 265	8 100.12	30 774	1.288
85	.0169	3 985	17 469	4 209.43		

Gráfica 7

México: Secuencia de las estimaciones de la integridad del registro de defunciones, con y sin el supuesto de estabilidad, hombres, 1930-1935

MÉXICO: DISTRIBUCIONES DE LOS VALORES 5 Na, OBSERVADOS Y ESTIMADOS, HOMBRES, 1930-1935

Finalmente, se obtuvieron las poblaciones estables asociadas a las poblaciones observadas* (por sexo, 1930-1970), calculándose los valores $\hat{N}[(x+5)+]$ / est.

N(x+), donde $\hat{N}[(x+5)+]$ representa la población estimada por encima de la est. edad x+5 y N(x+) es la población estable asociada con edad arriba de x. Los resultados se presentan en el cuadro 10 y en la gráfica 16 del apéndice 4.

En este caso se observa: a) que el grado de subregistro disminuye a través del tiempo, teniéndose una cobertura casi completa para 1970; b) el subregistro es mayor para los hombres, previamente obtenidos, es difícil señalar un solo valor para resumir el grado de subregistro, para cada momento y sexo, por lo que se recomienda tomar los resultados obenidos, por edad específica y tomando en cuenta el diagnóstico hecho previamente.

CONCLUSIONES

La cuantificación del grado de subregistro de la mortalidad adulta en México ha sido el objetivo central del presente trabajo. Se ha aplicado el método de Preston, et al. con el cual, en una primera parte se ha diagnosticado la calidad y tipo de información que se requieren para estimar el grado de subregistro.

Se han observado serias deficiencias en la información antes citada, sobre todo en las estructuras por edad censadas y, dado que la estimación de la cobertura de registro se basa en dichas estructuras, los sesgos obtenidos impiden, de manera directa (empleando el método de Preston), cuantificar la cobertura.

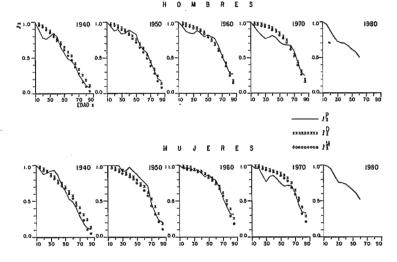
Después de diagnosticar algunas distorsiones en la información, se pasa a corregirlas, obteniéndose estimaciones más consistentes con la realidad mexicana. Lo anterior no debe interpretarse como que la estimación del grado de subregistro de la mortalidad adulta en México se ha evaluado con precisión, ya que, como se muestra en el presente trabajo, las distorsiones en la información no necesariamente se deben a los efectos señalados; no obstante, permiten el diagnóstico y evaluación de la información aquí planteados, y acercarse al conocimiento en materia de mortalidad adulta en México.

La importancia de conocer el grado de cobertura de las defunciones adultas en cualquier población humana radica en los efectos que tiene el fenómeno mortalidad frente a los demás fenómenos demográficos, y además, en la toma de decisiones que se basan en dicho fenómeno, por ejemplo, en políticas de población, programas de desarrollo urbano, programas de salud, etc. En resumen, el trabajo aquí planteado pretende servir a todo interesado en los niveles, tendencias, diferenciales y determinantes de la mortalidad en México para acercarlo al conocimiento de las dificultades con que se enfrenta la cuantificación de dicho fenómeno. Sin duda, en el futuro se desarrollarán y mejorarán las técnicas aquí expuestas, que facilitarán la estimación de la cobertura de las muertes adultas y con ello podrá corregirse el grado de subregistro de las mismas, y así estar en posibilidades de explicar con precisión el efecto de los niveles de la mortalidad en México.

^{*} Las poblaciones estables se obtuvieron empleando el programa INTSP. Ver: US. Department of Commerce; "Computer Programs for Demographic Analysis", Bureau of the Census, junio 1976.

Apéndice 1

MÉXICO: Tablas de vida obtenidas a partir de las estructuras por edad de la población, defunciones y tasas de mortalidad, por sexo, 1940-1980.

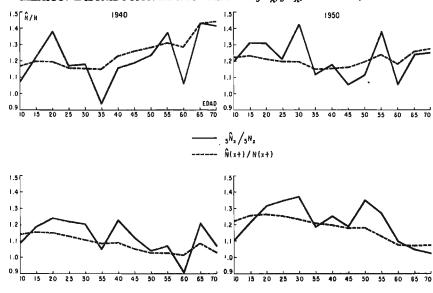

Cuadro 6

México: Tablas de vida obtenidas a partir de las estructuras por edad de la población, defunciones y tasas de mortalidad, por sexo, 1940-1980

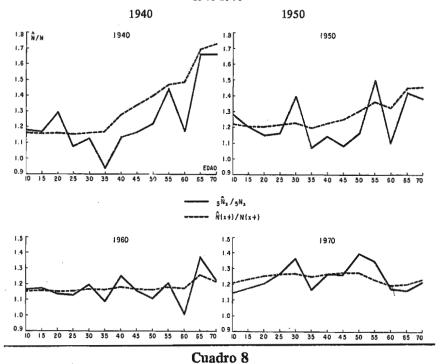
					MOI	RTALIDAD,	POR SEXU,	1940-1980					
						Но	mbres						
×		1940			1950			1960			1970		1980
	g _x	D 2x	M 8x	2x	D gx	M	8x	D 8x	M 8x	γx.	D Rx	M Rx	2x
	*X	×x.	XX	×x.	×x	2×	×x	××	XX	XX.	**	XX.	×x.
10	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
15	0.91549	0.98035	0.97966	0.93976	0.98850	0.98664	0.93739	0.99287	0.99223	0.93964	0.99413	0.99372	0.97181
20	0.78761	0.95610	0.95008	0.88147	0.97288	0.96575	0.87165	0.98254	0.98006	0.86818	0.98561	0.98373	0.89126
25	0.77348	0.92409	0.90691	0.89932	0.94908	0.93679	0.84803	0.96718	0.96128	0.80615	0.97320	0.96850	0.80330
30	0.79829	0.88173	0.85901	0.84136	0.92139	0.90488	0.84344	0.94781	0,93810	0.77116	0.95873	0.94943	0.73433
35	0.84393	0.83531	0.80642	0.84541	0.89406	0.86787	0.88769	0.92585	0.91225	0.79336	0.94137	0.92709	0,71045
40	0.79904	0.77148	0.74921	0.88748	0.85121	0.82294	0.85421	0.89451	0.88016	0.81194	0.91534	0.89619	0.70921
45	0.65001	0.71601	0.68788	0.86199	0.80877	0.77628	0.79642	0.86444	0.84430	0,78653	0.88648	0.86304	0.67906
50	0.57733	0.65465	0.61932	0.82544	0.74983	0.71847	0.82614	0.82279	0.79970	0.72744	0.84876	0.81901	0.62289
55	0.48687	0.59277	0.54871	0.66969	0.69230	0.65883	0.79088	0.77156	0.74872	0.67887	0.80717	0.76849	0.58552
60	0.45921	0.52901	0.47007	0.61811	0.63279	0.58381	0.77901	0.70446	0.68041	0.67947	0,75099	0.70273	0.52541
65	0.38835	0.43276	0.38088	0.57075	0.54247	0.49880	0.66330	0.61677	0.60581	0.67085	0.66827	0.61918	
70	0.26274	0.35486	0.28634	0.42650	0.44925	0.39717	0.50054	0.52880	0.50510	0.57996	0.55967	0.51832	
75	0.18830	0.26045	0.18629	0.30850	0.34140	0.28439	0.40122	0.41162	0,38906	0.42263	0.42713	0.39323	
80	0.12541	0.18574	0.10647	0.21012	0.24915	0.18079	0.27914	0.29835	0.26528	0,28950	0,31859	0.27748	
85	0.09528	0.10911	0.04799	0.16725	0.15472	0.09674	0.27114	0.18865	0.16053	0.25058	0.20538	9.16844	
						м	1) 6 7 8 3						
10	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
15	0.95632	0.98396	0.98128	1.00209	0.99039	0.98807	0.96821	0.94442	0.99352	0.96703	0.99536	0.99489	0.99676
20	0.89429	0.95931	0.95294	1.04110	0.97599	0.97136	0.96821	0.98634	0.98412	0.96781	0.98941	0.98814	0.95982
25	0.90320	0.92758	0.91287	1.03734	0.95567	0.94885	0.96984	0.97347	0.96947	0.85691	0.98046	0.97846	0.86915
30	0.92648	0.88749	0.87117	0.92496	0.93199	0.92306	0.93627	0.95814	0.95227	0.77591	0.96965	0.96510	0.77593
35	0,94613	0.84693	0.82702	0,93399	0.90999	0.89376	0.94193	0.94120	0.93229	0.84632	0.95709	0.94931	0.76278
40	0.89655	0.79395	0.77931	0.98532	0.87668	0.85957	0.90010	0.91796	0.90759	0.85767	0.93837	0.92725	0.75250
45	0.74646	0.74734	0.72857	0.92973	0.84432	0.82400	0.84744	0.89578	0.88028	0.81539	0.91790	0.90332	0.70851
50	0.67186	0.69761	0.67299	0.88260	0.80231	0.77985	0.87801	0.86575	0.84669	0.75081	0.89221	0.87160	0.66965
55	0,56272	0.64436	0.61199	0.72254	0.75771	0.73090	0.82221	0.82768	0.80636	0.71472	0.86305	0.83412	0.60941
60	0.31346	0.59167	0.54191	0.68229	0.71110	0.66575	0.80349	0.77760	0.74855	0.72521	0.82053	0.78149	0.53692
65	0.42865	0.49820	0.44460	0.63385	0.62796	0.58238	0.70256	0.70264	0.67699	0.71768	0.75188	0.70671	
70	0.29140	0.42262	0.34015	0.47590	0.54235	0.47464	0,54874	0.62276	0.57597	0.61974	0.65756	0.60954	
75	0.20852	0.32514	0.22166	0.35210	0.43307	0.35036	0.44558	0.51057	0,45425	0.46225	0.53886	0.48077	
80	0.14266	0.24943	0.12555	0.24969	0.33760	0.22370	0,32843	0.39780	0.31550	0.34714	0.42613	0.34672	
85	0.11894	0.15213	0.05076	0,22068	0.22060	0.12015	0,32426	0.26553	0.19055	0.33521	0.29126	0.21611	

Gráfica 9

MÉXICO: DISTRIBUCIONES DE LOS VALORES &X, &X y &X, POR SEXO, 1940-1980


Apéndice 2

Méx 1co: Gráficas y cuadros de los valores $_5\hat{N}_a/_5N_a$, $\hat{N}(a+)/N(a+)$, N(x)/N(a+) $\not\sim D(x+)/N(x+)$, por sexo, 1940-1970.


				Cuadro	7			
		Méxic	co: Valore	S DE śÑ _a /sN _a y Ń (a+) /N (a+).	POR SEXO, 1940-19	70.	
				Hombri				
Edad	194 5 Ña/5 N	0 N (a+) /N (a+)	195 5N _a /5N _a	0 N (a+) /N (a+)	190 5Na/5Na		197 5 Na/5 Na	0 N (a+)/N (a)
10	1.076	1.178	1.199	1.228	1.097	1.146	1.098	1.224
15	1.213	1.200	1,315	1.234	1.191	1.157	1.214	1.256
20	1.383	1.198	1.309	1.217	1.241	1.150	1.314	1.267
	1.383	1.162	1,203	1.197	1,241	1.130	1.347	1.256
25	1.170		1,423	1.196	1.221	1.130	1.347	1.236
30		1.160						
35	0.938	1.155	1.110	1.146	1.053	1.084	1.188	1.201
40	1.159	1.236	1.169	1.157	1.234	1.093	1.259	1.204
45	1.188	1.261	1.047	1.153	1.116	1.055	1.190	1.188
50	1.235	1.289	1.111	1.196	1.042	1.035	1.355	1.188
55	1.378	1.311	1.375	1.232	1072	1.033	1.273	1.133
60	1.065	1.282	1.047	1.177	0.893	1,016	1.096	1.080
65	1.438	1.439	1.238	1.261	1.210	1.095	1.055	1.071
70	1.422	1.440	1.250	1.276	1.075	1.032	1.032	1.183
75	1.669	1.455	1.474	1.299	1.233	1.000	1.346	0.128
80	1.505	1.266	1.353	1.144	1.151	0.824	1.204	0.956
85	0.927	0.927	0.863	0.863	0.522	0.522	0.675	0.675
				Mujere	3			
10	1.183	1.176	1.284	1.215	1.173	1.167	1,140	1.218
15	1.169	1.175	1.202	1.201	1.174	1.165	1.172	1.237
20	1.293	1.176	1.151	1.201	1.154	1.163	1,203	1.252
25	1.072	1.154	1.159	1.213	1.143	1.165	1.260	1.264
30	1.126	1.174	1.391	1.227	1.204	1.171	1.358	1.265
35	0.923	1.187	1.075	1.191	1.090	1.163	1.163	1.243
40	1.127	1.279	1.154	1.227	1.269	1.185	1.267	1.267
45	1.168	1.330	1.108	1.250	1.159	1.162	1.264	1.267
50	1.213	1.391	1.162	1.304	1.105	1.163	1.394	1.268
55	1.445	1.467	1.506	1.363	1.215	1.185	1.339	1.228
60	1.170	1.476	1.104	1.312	1.014	1.173	1.162	1.187
65	1.650	1.693	1.427	1.445	1.372	1.269	1.158	1.199
70	1.652	1.720	1.386	1.456	1.231	1.217	1.216	1.225
75	2.138	1.775	1.841	1.512	1.507	1.206	1.547	1.232
80	1.808	1.496	1.500	1.273	1.303	0.998	1.312	1.017
85	1.079	1.079	0.971	0.971	0.684	0.684	0.708	0.708
9.5	1.079	1,019	0.771	0.571	0.004	0.007	0.708	0.700

Gráfica 10

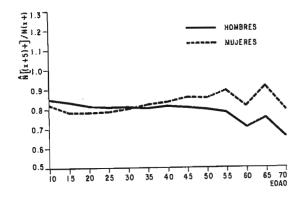
MÉXICO: DISTRIBUCIÓN DE LOS VALORES $_5\hat{N}_x/_5N_x$, HOMBRES, 1940-1970

Gráfica 11 México: Distribución de valores ${}_5\hat{N}_x/{}_5N_x$. Y $\hat{N}(x+)/N(x+)$, mujeres, 1940-1970

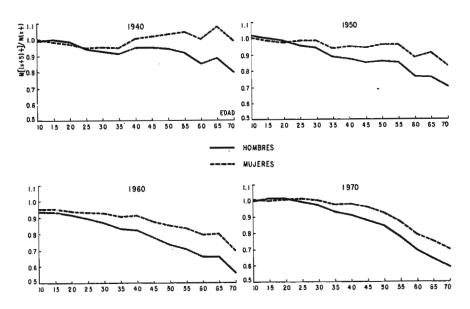
MÉXICO: VALORES DE N(x)/N(x+) y D(x+)/N(x+), POR SEXO, 1940-1970.

,				Homb	103			
		40	19	50	19	60	19	70
	N(x)/N(x+)	D(x+)/N(x+)	N(x)/N(x+)	D(x+)/N(x+)	N(x)/N(x+)	D(x+)/N(x+)	N(x)/N(x+)	D(x+)/N(x+)
10	.040	.016	.039	.012	.042	.009	.045	.009
15	.040	.019	.040	.014	.042	.011	.045	.010
20	.037	.021	.039	.016	.041	.012	,043	.012
25	.039	.024	.042	.018	.041	.014	.042	.015
30	.045	.027	.043	.021	.043	.017	.043	.017
35	.053	.031	.045	.024	.048	.019	.046	.020
40	.063	.036	.054	.028	.052	.023	.052	.024
45	.061	.043	.060	.033	.052	.027	.055	.028
50	.066	.051	.070	.041	.060	.032	.059	.035
55	.071	.062	.071	.051	.069	.039	.060	.042
60	.084	.075	.078	.061	.082	.048	.073	.051
65	.111	.099	.104	.079	.100	.064	.093	.064
70	.110	.125	.112	.102	.098	.079	.114	.083
75	.131	.159	.131	.132	.119	.099	.133	.108
80	.147	.203	.145	.169	.123	.117	.132	.133
85	.242	,275	.235	.233	.192	.133	.213	.172
				Mujos	0 9			
10	.036	.015	.036	.010	.039	.008	.042	.007
15	.036	.017	.037	,012	.040	.009	.043	.009
20	.037	.019	.041	.014	.041	.011	.044	.010
25	.040	.021	.044	.016	.044	.013	.044	.012
30	.046	.024	.043	.019	.045	.015	.044	.015
35	.053	.028	.045	.021	.048	.013	.046	.017
40	.061	.033	.055	.026	.051	.021	.052	.021
45	.061	.040	.059	.031	.051	.025	.054	.026
50	.068	.049	.067	.039	.060	.031	.056	.032
55	.073	,062	.068	.049	.067	.039	.058	.032
60	.084	.078	.075	.060	.077	.049	.070	.048
65	.109	.106	.101	.081	.094	.066	.088	.063
70	.106	.138	.105	.106	.094	.084	.105	.083
75	.125	.181	.124		.114	.110	.115	.109
80	.134	.235	.130	.142	.120	.136	.119	.136
85	.134	.320	.232	.263	.203	.175	.205	.130

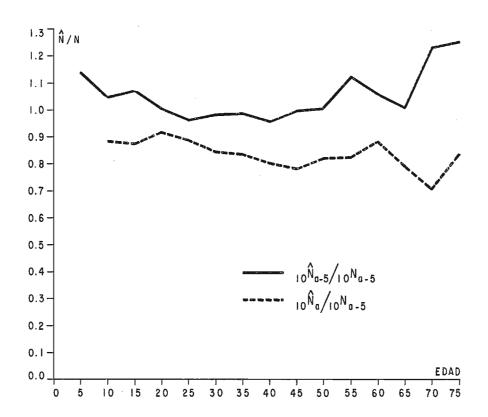
Gráfica 12


México: Gráficas de D(a+)/N(a+) contra N(a)/N(a+), por sexo, 1940-1970

Apéndice 3


México: Gráficas y cuadros de los valores \hat{N} [(x+5)+]/N(x+), por sexo, 1930-1970 y $_{10}\hat{N}_a/_{10}N_a-_5$, hombres, 1930.

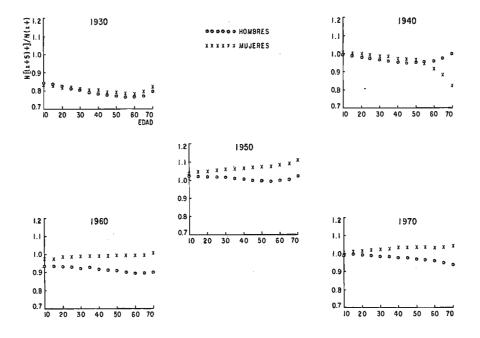
Gráfica 13 México: Distribución de los valores $\hat{N}((x+5)+)/N(x+)$, por sexo, 1930


Gráfica 14

MÉXICO: DISTRIBUCIÓN DE LOS VALORES $\hat{N}((x+5)+)/N(x+)$, POR SEXO, 1940-1970

x	1930	1940	Año 1950	1960	1970
		Hom	bres		
10	.858	.980	1.010	.937	.999
15	.841	.989	1.006	.939	1.019
20	.824	.975	.983	.924	1.019
25	.814	.933	.956	.899	1.00
30	.819	.918	.941	.871	.97
35	.810	.899	.888	.839	.930
40	.821	.944	.879	.830	.916
45	.813	.940	.855	.782	.883
50	.803	.930	.861	.743	.855
55 60	.789 .707	.902 .836	.850	.712 .666	.781 .703
65	.756	.875	.768 .767	.668	.647
70	.656	.789	.704	.568	.597
75	.553	.671	.610	.469	.53
80	.292	.384	.368	.272	.31
		Мuj	eres		
10	.829	.985	1.006	.959	1.00
1,5	.795	.975	.987	.952	1.00
20	.788	.966	.979	.943	1.01
25	.795	.937	.980	.937	1.01
30	.818	.942	.980	.931	1.00
35	.821	.939	.938	.913	.97
40 45	.844	.995	.950	.915	.97
43 50	.866 .864	1.011 1.026	.947 .961	.878 .855	.95 .93
55	.895	1.026	.965	.833 .839	.87
60	.813	.990	.883	.792	.79
65	.918	1.065	.910	.802	.75
70	.794	978	.834	.697	.70
75	.699	.847	.736	.589	.60
80	.348	.461	.418	.337	.34

 $\label{eq:Grafica 15} \text{M\'exico: Distribución de los valores $_{10}$\^{N}_{a-5}/_{10}N_{a-5}$ Y $_{10}$\^{N}_{a}/_{10}N_{a-5}$, $$HOMBRES 1930 $-1935$$


Apéndice 4 México: Gráfica y cuadro de los valores \hat{N} [(x+5)+]/N(x+), por sexo, 1930-1970.

Cuadro 10 $$^{\rm est}$$ México: Valores de n (x + 5) +) / n (x+) por sexo. 1930-1970

			ño		
x+5	1930	1940	1950	1960	1970
		Но	mbres		
10	0.8470	0.9906	1.0341	0.9395	0.9930
15	0.8387	0.9864	1.0327	0.9379	0.9924
20	0.8279	0.9808	1.0301	0.9355	0.9910
25	0.8166	0.9746	1.0274	0.9325	0.9892
30	0.8058	0.9674	1.0239	0.9287	0.9868
35	0.7949	0.9597	1.0193	0.9237	0.9826
40	0.7853	0.9536	1.0140	0.9182	0.9776
45	0.7776	0.9509	1.0089	0.9123	0.9732
50	0.7716	0.9510	1.0056	0.9060	0.9673
55	0.7689	0.9542	1.0055	0.9002	0.9617
60	0.7660	0.9585	1.0064	0.8948	0.9545
65	0.7697	0.9723	1.0123	0.8963	0.9457
70	0.7923	1.0039	1.0289	0.8984	0.9352
75	0.8367	1.0526	1.0620	0.9104	0.9407
80	0.8889	1.1207	1.1034	0.9194	0.9524
85	0.8000	1.0526	1.0500	0.8636	0.8696
		Mu	jeres		
10	0.8408	1.0030	1.0469	0.9763	1.0073
15	0.8351	1.0026	1.0516	0.9797	1.0117
20	0.8274	1.0002	1.0558	0.9828	1.0158
25	0.8198	0.9969	1.0603	0.9860	1.0203
30	0.8128	0.9927	1.0650	0.9890	1.0245
35	0.8064	0.9868	1.0693	0.9915	1.0280
40	0.8005	0.9799	1.0728	0.9941	1.0316
45	0.7958	0.9719	1.0767	0.9959	1.0345
50	0.7913	0.9608	1.0803	0.9961	1.0370
55	0.7882	0.9452	1.0869	0.9968	1.0374
60	0.7856	0.9197	1.0925	0.9970	1.0362
65	0.7934	0.8834	1.1013	1.0000	1.0358
70	0.8201	0.8286	1.1250	1.0107	1.0391
75	0.8686	0.7216	1.1677	1.0253	1.5000
80	0.9231	1.2394	1.2055	1.0395	1.0513
85	0.8462	1.1250	1.1154	0.9310	0.9333

Gráfica 16

México: Distribución de los valores $\hat{N}((X+5)+)/N(X+)$, por sexo, 1930-1970

Referencias

BARCLAY, George W.; Coale, Ansley J.; Stoto, Michael A.; and Trussell, T. James. 1976. A reassessment of the demography of traditional rural China. *Population Index* (Princeton, N.J.) 42 (4): 606-635.

BENNETT, G. Neil and Horiuchi, Shiro; 1981. "Estimating the Completeness of Death Registration in a Closed Population". *Population Index* (Princeton, N.J.), 47 (2): 207-222.

Brass, William; and Coale, Ansley J. 1968. Methods of analysis and estimation. In *The Demography of Tropical Africa*, by William Brass et al., pp. 88-139. Princeton, N.J.: Princeton University Press.

, 1975. Methods for Estimating Fertility and Mortality from Limited and Defective Data: Based on Seminars Held 16-24 September 1971 at the Centro Latinoamericano de Demografia (CELADE) San José, Costa Rica. Chapel Hill, N.C.: University of North Carolina, International Program of Laboratories for Population Statistics xii, 159 pp.

_____, 1979. A procedure for comparing mortality measures calculated from

- intercensal survival with the corresponding estimates from registered deaths. Asian and Pacific Census Forum (Honolulu) 6 (2): 5-7.
- Coale, Ansley J.; and Demeny, Paul. 1966. Regional Model Life Tables and Stable Populations. Princeton, N.J.: Princeton University Press. xiii, 871 pp. Coale, Ansley J. 1972. The Growth and Structure of Human Populations: A
- for Princeton University, Office of Population Research, xii, 227 pp.
- Trends in Fertility and Mortality in the Republic of Korea. Report No. 1. Washington: National Academy of Sciences for National Research Council, Committee on Population and Demography. xiv, 77 pp.
- KOREA, Republic. Economic Planning Board. National Bureau of Statistics. 1972. 1970 Population and Housing Census Report. Vol. 1. Complete Enumeration. No. 12-1. Republic of Korea. Seoul: Economic Planning Board, National Bureau of Statistics. 416 pp.
- Population and Housing Census Report. Vol. 1. Complete Enumeration. No. 12-1. Whole Country. Seoul: Economic Planning Board, National Bureau of Statistics. 368 pp.
- MARTIN, Linda. 1977. Measuring Completeness of Death Registration in Destabilized Populations. Ph. D. thesis, Princeton University.
- , 1980. A modification for use in destabilized populations of Brass's technique for estimating completeness of death registration. *Population Studies* (London) 34 (2): 381-395.
- Preston, Samuel H.; and Palloni, Alberto. 1977. Fine-tuning Brass-type mortality estimates with data on ages of surviving children. *Population Bulletin of the United Nations* (New York), No. 10. Pp. 72-91.
- Preston, Samuel; and Hill, Kenneth. 1980. Estimating the completeness of death registration. *Population Studies* (London) 34 (2): 349-366.
- Preston, Samuel; Coale, Ansley J.; Trussell, James; and Weinstein, Maxime. 1980 Estimating the completeness of reporting of adult deaths in populations that are approximately stable. *Population Index* (Princeton, N.J.) 46 (2): 179-202.
- Sullivan, Jeremiah M. 1972. Models for the estimation of the probability of dying between birth and exact ages of early childhood. *Population Studies* (London) 29 (1): 79:97.
- Sweden. Statistiska Centralbyran. 1966-1967. Folkmangdens Forandringar Population Changes. 1965 and 1966 editions Stockholm: Statistiska Centralbyran.
- 3. Hela Riket och Länen m m Population Changes... Part 3. The Whole Country and the Counties etc. 1967, 1968, and 1970 editions. Stockholm: Stastiska Centralbyrån.
- ———, Statistiska Centralbyrån. 1974. Livslangdstabeller for Artiondet 1961-1970 Life Tables for the Decade 1961-1970 Stockholm: Statistiska Centralbyrån.
- TRUSSELL, T. James. 1975. A re-estimation of the multiplying factors for the

Brass technique for determining childhood survivorship rates. Population

Studies (London) 29 (1): 97-107.

——, and Manken, Jane. 1969. Estimating the completeness of deaths and relative underenumeration in two successive censuses. Asian and Pacific Census Forum (Honolulu) 6 (2): 9-11.

U.N. DEPARTMENT of International Economic and Social Affairs. Population Division. 1979. Model Life Tables for Developing Countries: An Interim Report. Working Paper, No. 63. ESA/P/WP. 63. New York: U.N., Department of International Economic and Social Affairs. 89 pp.

VINCENT, Paul. 1951. La mortalité des vieillards The mortality of the aged Population (Paris) 6 (2): 182-204.