Notas y comentarios

Las ciudades mexicanas no siguen la ley de Zipf*

Carlos M. Urzúa**

En este artículo se examina la hipótesis de que las ciudades mexicanas siguen la ley de Zipf, la cual establece que si se ordenan las ciudades de un país (o región) de acuerdo con su tamaño poblacional, entonces el rango de cada ciudad multiplicado por su tamaño produce siempre la misma constante. En este trabajo se afirma que tal ley no es aplicable al caso mexicano, y también se arguye que muchos estudios que pretenden mostrar que tal ley se aplica para otros países carecen de fundamentos estadísticos sólidos.

Introducción

La literatura sobre el tamaño de las ciudades abunda en referencias que pretenden mostrar, de una manera u otra, la validez de la llamada ley de Zipf (1949), así como algunas generalizaciones de ella. Dado que tal hipótesis tiene ya medio siglo de vida, es ciertamente notable el hecho de que haya permanecido vigente por tanto tiempo (véase, por ejemplo, Clark, 1967; Rosen y Resnick, 1980; y Krugman, 1996). No obstante, uno de los dos propósitos de este artículo es advertir que tal ley no se aplica al caso mexicano. El otro objetivo es mostrar que la mayoría de los estudios urbanos que pretenden haber encontrado ejemplos que validan la ley de Zipf no son robustos desde un punto de vista estadístico.

La ley de Zipf

¿Cuáles son las predicciones de dicha ley? Supongamos que ordenamos las n mayores ciudades (o mejor aún, áreas metropolitanas) de México, usando como criterio el número de habitantes de cada una de ellas:

*Agradezco los comentarios de los dictaminadores anónimos que revisaron el presente artículo. Este trabajo forma parte del proyecto Geografía y Desarrollo Económico que fue encargado por el Banco Interamericano de Desarrollo a El Colegio de México en 1999.

**Profesor-investigador del Centro de Estudios Económicos de El Colegio de México.

[661]
donde r denota el rango de la ciudad y $x_{(r)}$ denota su tamaño. La ley de Zipf asegura que si graficáramos el rango correspondiente a cada ciudad contra el tamaño de cada una de las n ciudades, entonces nos encontraríamos con una hipérbola rectangular perfecta. Es decir, la ley establece que el producto de r por $x_{(r)}$ sería igual a la misma constante en todos los casos. Así pues, por ejemplo, la ley de Zipf implica que si consideramos las dos ciudades más pobladas (rango igual a 1 y 2), entonces la más grande debe tener el doble de habitantes comparada con la segunda población.

Puesto de otra manera, la ley de Zipf afirma que si graficáramos el logaritmo natural del rango contra el logaritmo del tamaño de la ciudad, entonces lo que aparecería sería una línea recta con pendiente igual a -1; esto es porque de la ecuación $r x_{(r)} = c$ se sigue que $\ln(r) + \ln(x_{(r)}) = \ln(c)$. De hecho, las más de las veces los investigadores que afirman haber encontrado otro ejemplo donde dicha ley se cumple presentan como "prueba", aparte de una gráfica, los resultados de la siguiente regresión estimada por mínimos cuadrados ordinarios:

$$\ln r = \beta_1 + \beta_2 \ln x_{(r)} + \varepsilon_r$$

para después afirmar que el estimado de la pendiente es "cercano" a -1. Sin embargo, pocos han notado que tal procedimiento es muy ineficiente (y, por tanto, puede llevar fácilmente a inferencias erróneas). La razón es que la distribución del error en la regresión anterior no es ni lejanamente normal, puesto que la variable que está en el lado izquierdo, el logaritmo del rango, es una variable discreta.

Como explica ampliamente Rapoport (1978), por ejemplo, la única manera eficiente de probar la ley de Zipf es estableciéndola en términos probabilísticos: en lugar de establecer una relación rango-tamaño, lo que se requiere es encontrar una relación frecuencia-tamaño. Una vez hecho esto, uno puede mostrar (véase, por ejemplo, Urzúa, 2000) que la ley de Zipf, puesta en términos probabilísticos, simplemente afirma que el tamaño de los objetos sigue una distribución de Pareto con exponente igual a uno.

Es decir, la densidad implícita en la ley de Zipf está dada por:

$$f(x) = \frac{\alpha}{\mu} \left(\frac{x}{\mu} \right)^{-(\alpha+1)}$$
con el parámetro $\alpha = 1$ ($x \geq \mu$). Habiendo encontrado tal densidad, en “A Simple and Efficient Test for Zipf’s Law” (Urzúa, 2000) se propone un estadístico localmente óptimo (en un sentido explicado en ese documento) que puede ser usado para probar tal hipótesis de Zipf. El estadístico es el siguiente (el símbolo LMZ pretende denotar el hecho de que la prueba para la ley de Zipf está basado en el estadístico de múltiplicadores de Lagrange):

$$LMZ = 4n[z_1^2 + 6z_2^2 + 12z_2^2]$$

donde las dos variables dentro del paréntesis están dadas por:

$$z_1 = 1 - \frac{1}{n} \sum_{i=1}^{n} \ln \frac{x_i}{x^{(n)}}$$

$$z_2 = \frac{1}{2} - \frac{1}{n} \sum_{i=1}^{n} \frac{x^{(n)}}{x^{(i)}}$$

En las expresiones anteriores n es el tamaño de la muestra, x_i es el tamaño del i-ésimo objeto (es irrelevante que estén ordenados o no), y $x^{(n)}$ es el tamaño de la ciudad más pequeña en la muestra.

Bajo la hipótesis nula de que la ley de Zipf se cumple, el estadístico LMZ propuesto más arriba sigue, asintóticamente, una distribución t con dos grados de libertad. Así pues, dada una muestra específica, para probar la hipótesis de Zipf basta seguir los siguientes tres pasos: primero, hay que identificar el menor tamaño en la muestra ($x^{(n)}$); segundo, hay que calcular el valor del estadístico LMZ haciendo uso de todos los datos, y tercero, dado un cierto nivel de significancia, hay que comparar el valor de LMZ con el valor crítico correspondiente. Si aquél es mayor que éste, entonces uno debe rechazar la hipótesis nula (la hipótesis de que la ley de Zipf se cumple); de otra manera uno no puede rechazarla.

Podemos ser más específicos respecto a este último punto: si se usa un nivel de significancia de 10%, como es común en los estudios sobre distribuciones, entonces el valor crítico que debe usarse es aproximadamente 4.61. Éste es el valor crítico de una χ^2 con dos grados de libertad, hacia donde, como ya mencionamos, converge asintóticamente la distribución del estadístico. Para tener una mayor con-
fiabilidad en la inferencia, puede usarse el cuadro 1 que se presenta en Urzúa (2000), donde, por ejemplo, se establece que si la muestra es de un tamaño igual a 50, entonces el valor crítico es 4.49.

Aplicaciones al caso mexicano

CUADRO 1
Áreas metropolitanas con mayor población en México*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guadalajara</td>
<td>907 511</td>
<td>1 533 485</td>
<td>2 323 380</td>
<td>2 987 194</td>
</tr>
<tr>
<td>Monterrey</td>
<td>740 732</td>
<td>1 278 780</td>
<td>2 040 521</td>
<td>2 603 709</td>
</tr>
<tr>
<td>Puebla</td>
<td>445 697</td>
<td>723 453</td>
<td>1 122 858</td>
<td>1 436 671</td>
</tr>
<tr>
<td>Ciudad Juárez</td>
<td>262 119</td>
<td>407 370</td>
<td>544 496</td>
<td>789 522</td>
</tr>
<tr>
<td>León</td>
<td>209 870</td>
<td>364 990</td>
<td>593 002</td>
<td>758 279</td>
</tr>
<tr>
<td>Tijuana</td>
<td>152 374</td>
<td>277 306</td>
<td>429 500</td>
<td>698 752</td>
</tr>
<tr>
<td>Torreón-Gómez Palacio-Lerdo</td>
<td>258 757</td>
<td>322 557</td>
<td>478 523</td>
<td>650 121</td>
</tr>
<tr>
<td>Mérida</td>
<td>170 834</td>
<td>212 097</td>
<td>400 142</td>
<td>523 422</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>150 430</td>
<td>257 027</td>
<td>385 603</td>
<td>516 153</td>
</tr>
<tr>
<td>Acapulco</td>
<td>49 149</td>
<td>174 378</td>
<td>301 902</td>
<td>515 374</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>159 980</td>
<td>230 039</td>
<td>362 371</td>
<td>489 288</td>
</tr>
<tr>
<td>Aguascalientes</td>
<td>196 617</td>
<td>181 277</td>
<td>293 152</td>
<td>440 225</td>
</tr>
<tr>
<td>Mexicali</td>
<td>174 540</td>
<td>263 498</td>
<td>341 559</td>
<td>438 377</td>
</tr>
<tr>
<td>Saltillo-Ramos Arizpe</td>
<td>102 764</td>
<td>167 319</td>
<td>294 310</td>
<td>437 743</td>
</tr>
<tr>
<td>Tampico-Ciudad Madero</td>
<td>176 163</td>
<td>270 414</td>
<td>400 401</td>
<td>433 021</td>
</tr>
<tr>
<td>Morelia</td>
<td>100 828</td>
<td>161 040</td>
<td>297 544</td>
<td>428 486</td>
</tr>
<tr>
<td>Culiacán</td>
<td>85 024</td>
<td>167 956</td>
<td>304 826</td>
<td>415 046</td>
</tr>
<tr>
<td>Hermosillo</td>
<td>95 978</td>
<td>176 596</td>
<td>297 175</td>
<td>406 417</td>
</tr>
<tr>
<td>Querétaro</td>
<td>67 674</td>
<td>112 993</td>
<td>215 076</td>
<td>385 503</td>
</tr>
<tr>
<td>Durango</td>
<td>97 305</td>
<td>150 541</td>
<td>257 915</td>
<td>348 056</td>
</tr>
<tr>
<td>Coatzacoalcos-Mimatitlán</td>
<td>37 300</td>
<td>69 753</td>
<td>233 935</td>
<td>340 877</td>
</tr>
<tr>
<td>Reynosa-Rio Bravo</td>
<td>74 140</td>
<td>176 401</td>
<td>249 929</td>
<td>332 755</td>
</tr>
<tr>
<td>Toluca</td>
<td>77 124</td>
<td>114 079</td>
<td>199 778</td>
<td>327 865</td>
</tr>
<tr>
<td>Veracruz</td>
<td>144 681</td>
<td>214 072</td>
<td>284 822</td>
<td>303 153</td>
</tr>
<tr>
<td>Tuxtla Gutiérrez</td>
<td>41 244</td>
<td>66 851</td>
<td>131 096</td>
<td>289 626</td>
</tr>
</tbody>
</table>
NOTAS Y COMENTARIOS

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>1990 (P)</th>
<th>1990 (H)</th>
<th>1980 (P)</th>
<th>1980 (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xalapa</td>
<td>66,269</td>
<td>122,377</td>
<td>204,594</td>
<td>279,451</td>
</tr>
<tr>
<td>Cuernavaca</td>
<td>37,144</td>
<td>134,117</td>
<td>192,770</td>
<td>279,187</td>
</tr>
<tr>
<td>Matamoros</td>
<td>92,327</td>
<td>137,749</td>
<td>188,745</td>
<td>266,055</td>
</tr>
<tr>
<td>Irapuato</td>
<td>83,768</td>
<td>116,651</td>
<td>170,138</td>
<td>265,042</td>
</tr>
<tr>
<td>Mazatlán</td>
<td>75,751</td>
<td>119,553</td>
<td>199,830</td>
<td>262,705</td>
</tr>
<tr>
<td>Villahermosa</td>
<td>52,262</td>
<td>99,565</td>
<td>158,216</td>
<td>261,291</td>
</tr>
<tr>
<td>Córdoba-Orizaba</td>
<td>117,157</td>
<td>171,012</td>
<td>214,820</td>
<td>244,912</td>
</tr>
<tr>
<td>Ciudad Obregón</td>
<td>67,956</td>
<td>114,407</td>
<td>165,572</td>
<td>219,980</td>
</tr>
<tr>
<td>Nuevo Laredo</td>
<td>92,627</td>
<td>148,867</td>
<td>201,731</td>
<td>218,413</td>
</tr>
<tr>
<td>Celaya</td>
<td>58,851</td>
<td>79,977</td>
<td>141,675</td>
<td>214,856</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>72,570</td>
<td>99,535</td>
<td>154,223</td>
<td>212,818</td>
</tr>
<tr>
<td>Tepic</td>
<td>54,069</td>
<td>87,540</td>
<td>145,741</td>
<td>206,967</td>
</tr>
<tr>
<td>Ciudad Victoria</td>
<td>50,797</td>
<td>83,897</td>
<td>140,161</td>
<td>194,996</td>
</tr>
<tr>
<td>Uruapan</td>
<td>45,727</td>
<td>82,677</td>
<td>122,828</td>
<td>187,623</td>
</tr>
<tr>
<td>Monclova</td>
<td>43,077</td>
<td>78,134</td>
<td>115,786</td>
<td>177,792</td>
</tr>
<tr>
<td>Pachuca</td>
<td>64,571</td>
<td>83,892</td>
<td>110,351</td>
<td>174,013</td>
</tr>
<tr>
<td>Ensenada</td>
<td>42,561</td>
<td>77,687</td>
<td>120,483</td>
<td>169,426</td>
</tr>
<tr>
<td>Los Mochis</td>
<td>38,307</td>
<td>67,953</td>
<td>122,531</td>
<td>162,659</td>
</tr>
<tr>
<td>Poza Rica</td>
<td>19,564</td>
<td>120,462</td>
<td>166,799</td>
<td>151,739</td>
</tr>
<tr>
<td>Campeche</td>
<td>43,874</td>
<td>69,506</td>
<td>128,434</td>
<td>150,518</td>
</tr>
<tr>
<td>Zacatecas-Guadalupe</td>
<td>39,589</td>
<td>63,497</td>
<td>105,483</td>
<td>146,484</td>
</tr>
<tr>
<td>Zamora-Jacala</td>
<td>47,675</td>
<td>80,489</td>
<td>116,953</td>
<td>145,597</td>
</tr>
<tr>
<td>Colima</td>
<td>43,518</td>
<td>58,450</td>
<td>86,044</td>
<td>142,844</td>
</tr>
<tr>
<td>Tehuacán</td>
<td>31,897</td>
<td>47,497</td>
<td>79,547</td>
<td>139,450</td>
</tr>
<tr>
<td>Tapachula</td>
<td>41,578</td>
<td>60,620</td>
<td>85,766</td>
<td>138,858</td>
</tr>
<tr>
<td>La Paz</td>
<td>24,253</td>
<td>46,011</td>
<td>91,453</td>
<td>137,641</td>
</tr>
<tr>
<td>Salamanca</td>
<td>92,663</td>
<td>61,039</td>
<td>96,703</td>
<td>125,190</td>
</tr>
<tr>
<td>Guayuta</td>
<td>12,427</td>
<td>13,946</td>
<td>24,153</td>
<td>110,242</td>
</tr>
<tr>
<td>Nogales</td>
<td>37,657</td>
<td>52,108</td>
<td>65,603</td>
<td>105,873</td>
</tr>
<tr>
<td>Chilpancingo</td>
<td>18,022</td>
<td>36,193</td>
<td>67,498</td>
<td>92,165</td>
</tr>
<tr>
<td>Piedras Negras</td>
<td>44,992</td>
<td>41,033</td>
<td>67,455</td>
<td>96,178</td>
</tr>
<tr>
<td>San Luis Río Colorado</td>
<td>28,545</td>
<td>49,990</td>
<td>76,684</td>
<td>95,461</td>
</tr>
<tr>
<td>Chetumal</td>
<td>12,855</td>
<td>23,685</td>
<td>56,709</td>
<td>94,158</td>
</tr>
<tr>
<td>Puerto Vallarta</td>
<td>7,484</td>
<td>24,155</td>
<td>38,645</td>
<td>95,503</td>
</tr>
<tr>
<td>Ciudad Valles</td>
<td>23,823</td>
<td>47,587</td>
<td>65,609</td>
<td>91,402</td>
</tr>
<tr>
<td>Hidalgo del Parral</td>
<td>41,474</td>
<td>57,619</td>
<td>75,590</td>
<td>88,197</td>
</tr>
<tr>
<td>Guaymas</td>
<td>34,865</td>
<td>57,492</td>
<td>54,826</td>
<td>87,484</td>
</tr>
<tr>
<td>Tlaxcala-Chiautempan</td>
<td>18,841</td>
<td>22,299</td>
<td>31,641</td>
<td>85,984</td>
</tr>
<tr>
<td>Ciudad del Carmen</td>
<td>21,164</td>
<td>40,855</td>
<td>72,489</td>
<td>85,806</td>
</tr>
<tr>
<td>Iguala</td>
<td>26,845</td>
<td>45,355</td>
<td>66,005</td>
<td>83,412</td>
</tr>
<tr>
<td>Apazzingán</td>
<td>19,568</td>
<td>44,849</td>
<td>55,522</td>
<td>76,643</td>
</tr>
<tr>
<td>Tulancingo</td>
<td>26,839</td>
<td>53,799</td>
<td>53,400</td>
<td>75,477</td>
</tr>
<tr>
<td>Fresnillo</td>
<td>35,582</td>
<td>44,475</td>
<td>56,066</td>
<td>75,118</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>28,212</td>
<td>36,809</td>
<td>48,981</td>
<td>73,108</td>
</tr>
<tr>
<td>Manzanillo</td>
<td>19,950</td>
<td>20,777</td>
<td>39,088</td>
<td>67,697</td>
</tr>
<tr>
<td>San Juan Bautista Tuxtepec</td>
<td>8,471</td>
<td>17,700</td>
<td>29,060</td>
<td>62,788</td>
</tr>
<tr>
<td>Salina Cruz</td>
<td>14,897</td>
<td>22,004</td>
<td>40,010</td>
<td>61,656</td>
</tr>
<tr>
<td>San Juan del Río</td>
<td>11,177</td>
<td>15,422</td>
<td>27,204</td>
<td>61,652</td>
</tr>
<tr>
<td>Matzimba</td>
<td>19,927</td>
<td>28,799</td>
<td>41,550</td>
<td>54,713</td>
</tr>
<tr>
<td>Tepatitlán de Morelos</td>
<td>19,835</td>
<td>29,292</td>
<td>41,813</td>
<td>54,036</td>
</tr>
<tr>
<td>Juchitán de Zaragoza</td>
<td>19,797</td>
<td>30,218</td>
<td>38,801</td>
<td>55,666</td>
</tr>
<tr>
<td>Lázaro Cárdenas</td>
<td>19,06</td>
<td>4,766</td>
<td>26,217</td>
<td>53,581</td>
</tr>
<tr>
<td>Allende</td>
<td>14,891</td>
<td>24,286</td>
<td>30,003</td>
<td>48,935</td>
</tr>
<tr>
<td>Apizaco</td>
<td>15,705</td>
<td>21,189</td>
<td>30,498</td>
<td>43,663</td>
</tr>
<tr>
<td>Zihuateneo</td>
<td>1,619</td>
<td>4,874</td>
<td>6,887</td>
<td>37,328</td>
</tr>
<tr>
<td>Ciudad Constitución</td>
<td>1,706</td>
<td>15,968</td>
<td>23,557</td>
<td>34,692</td>
</tr>
</tbody>
</table>

*Exceptuando la Ciudad de México, ordenadas de acuerdo con su población en 1990.

Como se observa en ese cuadro, no incluimos en nuestro examen a la Ciudad de México y sus zonas aledañas. La razón es que si la incluyéramos, entonces la ley de Zipf estaría condenada a ser rechazada de primera instancia, pues tal ley sostiene, en particular, que el tamaño de la segunda ciudad más grande debe ser aproximadamente igual a la mitad de la primera. Esto, sin embargo, está muy lejos de ser verdad: la Ciudad de México y sus zonas aledañas tenían en 1960, aproximadamente, una población seis veces mayor que la de Guadalajara, y aún hoy la relación es aproximadamente de cuatro a uno.

Antes de hacer un examen robusto de los datos contenidos en el cuadro 1, bien vale la pena preguntarse acerca de los resultados que se obtendrían al aplicar los procedimientos de “prueba” de la ley de Zipf que han sido empleados hasta este momento en la literatura. A manera de ilustración consideramos la muestra correspondiente a 1990. La gráfica 1 presenta la curva que resulta de graficar la población de cada ciudad contra su rango. ¿Es esa curva una hipérbola rectangular (es decir, simétrica) como lo establecería la ley de Zipf? Pues depende del cristal con que se mire.
Dada la ambigüedad presente en toda inspección ocular, es también común que los investigadores presenten los resultados de la regresión que se obtiene al correr el logaritmo natural del rango contra el logaritmo natural de la población (véase la sección anterior). Si hacemos lo mismo para el año de 1990, los resultados que se obtienen son los siguientes:

\[
\ln r = 14.93 - 0.95 \ln x(r)
\]

donde los errores estándares para los dos estimadores de los coeficientes son, respectivamente, 0.38 y 0.03, y donde la \(R^2 \) toma el valor de 0.92.

Si aceptáramos el procedimiento anterior como un método de inferencia confiable (lo cual, se insiste, no lo es), ¿qué podríamos inferir de esa regresión? Dado que la hipótesis es nula, la ley de Zipf establece que el coeficiente del logaritmo de la población debe ser igual a -1, entonces procederíamos a calcular el valor del correspondiente estadístico \(t \), que en nuestro caso es igual a -1.67 (\(= [-1 + 0.95]/0.03 \)). Así pues, no rechazaríamos la ley de Zipf con un nivel de significancia del 5 por ciento.

¿Qué pasaría en el caso de los años 1980, 1970 y 1960? Dado que los valores estimados para las pendientes serían, respectivamente, -0.82, -0.80 y -0.71, con errores estándares cercanos a 0.04 en los tres casos, entonces para esas tres décadas la hipótesis de Zipf sería fácilmente rechazada (con un nivel de significancia de 5 por ciento).

Ahora procederemos a examinar, para cada una de esas cuatro muestras, la validez de la ley de Zipf mediante el estadístico \(LMZ \). Como se comentó con anterioridad, esto nos permite efectuar un análisis estadístico más robusto. Consideremos, por ejemplo, el año de 1990. Como puede apreciarse en el cuadro 1, en ese momento la ciudad más pequeña de la muestra era Ciudad Constitución, con una población de 34 692 habitantes. Así pues, \(x_{(81)} = 34692 \). Habiendo obtenido este valor, es posible entonces calcular las dos expresiones para \(z_1 \) y \(z_2 \), para finalmente calcular el valor de \(LMZ \).

Siguiendo ese procedimiento, los valores calculados usando el estadístico \(LMZ \) para 1960, 1970, 1980 y 1990 fueron, respectivamente: 545.54, 272.45, 304.25 y 51.76, todos los cuales son grandísimos comparados con 4.61 (el valor crítico aproximado cuando el nivel de significancia es de 10%). De hecho, necesitaríamos estar dispuestos a aceptar valores de significancia del orden de 0.000000001% para no rechazar la ley de Zipf para el mejor de los valores de \(LMZ \) (51.76 pa-
ra 1990). Esto querría decir que estaríamos dispuestos a aceptar valores muy cercanos a 100% en el caso de la probabilidad de cometer el error tipo II (es decir, la probabilidad de que siendo la hipótesis de Zipf incorrecta, se persista en afirmar que es cierta).

Nótese que aun cuando también habíamos detectado la invalidez de la ley de Zipf para 1960, 1970 y 1980 mediante el procedimiento de mínimos cuadrados ordinarios, éste nos había hecho concluir erróneamente que tal ley era posiblemente válida para 1990. Este ejemplo muestra de manera muy clara por qué tantos investigadores, al usar procedimientos estadísticos ineficientes, han acabado por concluir que la ley de Zipf es robusta en muchos países.

Ahora bien, alguien puede aún argüir que en el caso mexicano la selección gubernamental incluye ciudades demasiado pequeñas, lo cual hace que la ley de Zipf no sea satisfecha a priori. Por ello, en un segundo examen se restringieron las muestras en cada una de las cuatro décadas a ciudades cuyo tamaño fuese de al menos 50 000 personas. Los valores entonces obtenidos para LMZ en 1960, 1970, 1980 y 1990 son, respectivamente (entre paréntesis se anota el tamaño de cada muestra): 1.91 ($n=35$), 4.64 ($n=53$), 10.74 ($n=65$) y 17.73 ($n=77$). Así pues, para 1970, 1980 y 1990 rechazamos de nueva cuenta la hipótesis de Zipf, pero para 1960 no la podemos rechazar usando un nivel de significancia de 5%. Tales resultados tampoco parecen muy alentadores para los seguidores de esa hipótesis.

Conclusiones

Los resultados obtenidos en la sección anterior son muy desalentadores para los seguidores de Zipf. ¿Quiere esto decir que México constituye una excepción a esa supuesta “ley natural”? No. Lo más probable es que los estudios que pretenden justificar la ley de Zipf en otros países (o en regiones aun mayores) sean muy poco confiables desde un pun-
to de vista estadístico (véase también la discusión en Rapoport, 1978). De hecho, en el trabajo de Urzúa (2000) se muestra que en el caso estadunidense tampoco se cumple la ley de Zipf, excepto para muestras muy bien seleccionadas. Esto no debe sorprendernos porque, como también se prueba en dicho trabajo, "estrictamente hablando, la ley de Zipf no puede ser cierta excepto para un determinado tamaño de la muestra, y esto si acaso".

Bibliografía